已知抛物线. (1)求证:不论m为何值.抛物线与x轴总有两个交点, (2)设抛物线的顶点为C.与x轴两个交点为A.B.当m为何值时.△ABC是正三角形. 查看更多

 

题目列表(包括答案和解析)

已知抛物线

(1)求证:不论m取何值,此抛物线与x轴必有两个交点,并且有一个交点是A(2,0);

(2)设此抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关系式;

(3)设d=10,P(a,b)为抛物线上一点,①当△ABP是直角三角形时,求b的值;②当△ABP是锐角三角形、钝角三角形时,分别写出b的取值范围(不必写出解答过程)

查看答案和解析>>

已知抛物线y=-x2+mx+(7-2m)(m为常数).
(1)证明:不论m为何值,抛物线与x轴恒有两个不同的交点;
(2)若抛物线与x轴的交点A(x1,0)、B(x2,0)的距离为AB=4(A在B的左边),且抛物线交了轴的正半轴于C,求抛物线的解析式.

查看答案和解析>>

已知抛物线y=x2-(m2+5)x+2m2+6.
(1)求证:无论m为何值,抛物线与x轴必有两个交点,并且有一个交点必为A(2,0);
(2)设抛物线与x轴的另一个交点为B,记AB的长为d,求d与m之间的函数关系式;
(3)令d=10,问抛物线上是否存在点P,使△ABP为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.精英家教网

查看答案和解析>>

已知抛物线的解析式为y=-x2+2mx+4-m2
(1)求证:不论m取何值,此抛物线与x轴必有两个交点,且两交点A、B之间的距离为定值;
(2)设点P为此抛物线上一点,若△PAB的面积为8,求符合条件的所有点P的坐标(可用含m的代数式表示)
(3)若(2)中△PAB的面积为s(s>0),试根据面积s值的变化情况,确定符合条件的点P的个数.

查看答案和解析>>

已知抛物线y=-x2+mx+(7-2m)(m为常数).
(1)证明:不论m为何值,抛物线与x轴恒有两个不同的交点;
(2)若抛物线与x轴的交点A(x1,0)、B(x2,0)的距离为AB=4(A在B的左边),且抛物线交了轴的正半轴于C,求抛物线的解析式.

查看答案和解析>>


同步练习册答案