反比例函数的应用 例31如图.点P是反比例函数y = 上的一点.PD⊥x轴于点D.则△POD的面积为 . 查看更多

 

题目列表(包括答案和解析)

你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积) s(mm2)的反比例函数,其图像如图所示。

1.写出y与s的函数关系式;

2.求当面条粗1.6mm2时,面条的总长度  是多少米?(考查反比例函数的应用)

 

查看答案和解析>>

你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积) s (mm2)的反比例函数,其图像如图所示。

【小题1】写出y与s的函数关系式;
【小题2】求当面条粗1.6mm2时,面条的总长度 是多少米?(考查反比例函数的应用)

查看答案和解析>>

你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积) s (mm2)的反比例函数,其图像如图所示。

1.写出y与s的函数关系式;

2.求当面条粗1.6mm2时,面条的总长度  是多少米?(考查反比例函数的应用)

 

查看答案和解析>>

15、(1)学习和研究《反比例函数的图象与性质》《一次函数的图象与性质》时,用到的数学思想方法有
数形结合
分类讨论、类比、从特殊到一般、化归、函数方程思想
.(填2个即可)
(2)学数学不仅仅是听课和解题,三年初中数学学习期间,教材中给你留下深刻印象的选学内容、数学活动、课题学习有
阅读与思考、观察与猜想、实验与探究、信息技术应用
数学活动
课题学习
(填3个即可).

查看答案和解析>>

(10分)(1)探究归纳:如图,已知△ABC与△ABD的面积相等,试判断
【小题1】(1)ABCD的位置关系,并说明理由.

【小题2】(2)结论应用:①如图,点M,N在反比例函数的图象上,过点MME⊥y轴,过点NNFx轴,垂足分别为EF.证明:MNEF.

②如图,点M,N在反比例函数y=的图象上,且M(2,m),N是第三象限内反比例函数y=的图象上一动点.过点MME⊥y轴,过点NEFx轴,垂足分别为EF.说明MNEF.并求当四边形MEFN的面积为12时点N的坐标.

查看答案和解析>>


同步练习册答案