一次函数中的数形结合[用数形结合思想] 例16 (1)已知一次函数y=kx+b的图象.当x<0时.y的取值范围是 (A)y > 0 (B)y < 0 (C)- 2 < y < 0 (D)y < - 2 已知正比例函数y = kx (k≠0)过第二.四象限.则 ( ) (A)y随x的增大而减小 (B)y随x的增大而增大 (C)当x<0时.y随x的增大而增大,当x>0时.y随x的增大而减小 (D)不论x如何变化.y不变 例17 新课程标准P36 例11 填表并观察下列两个函数的变化情况: X 1 2 3 4 5 - Y1 = 50 + 2x Y2 = 5x (1) 在同一个直角坐标系中画出上面两个函数的图象.比较它们有什么不同, (2) 当 x 从1开始增大时.预测哪一个函数的值先到达100. 查看更多

 

题目列表(包括答案和解析)

(2012•吴中区一模)已知集合B中的数与集合A中对应的数之间的关系是某个一次函数,若用y表示集合B中的数,用x表示集合A中的数,求y与x之间的函数关系式,并在集合B中写出与集合A中-2,-1,2,3对应的数值.

查看答案和解析>>

图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=
n(n+1)2
精英家教网
如果图1中的圆圈共有12层,我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是
 

查看答案和解析>>

图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面-层有一个圆圈,以下各层均比上-层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=
n(n+1)2

精英家教网
如果图1中的圆圈共有12层,
(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;
(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,…,求图4中所有圆圈中各数的绝对值之和.

查看答案和解析>>

如图是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为

 

 

 

 


       图1        图2         图3        图4

如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数,则最底层最左边这个圆圈中的数是              ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数,求图4中所有圆圈中各数的绝对值之和.

 

查看答案和解析>>

图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为

      

如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,,则最底层最左边这个圆圈中的数是                ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,,求图4中所有圆圈中各数的绝对值之和.

 

查看答案和解析>>


同步练习册答案