24. 如图1.正方形ABCD的顶点A,B的坐标分别为.顶点C.D在第一象限.点P从点A出发.沿正方形按逆时针方向运动.同时.点Q从点E(4.0)出发.沿x轴正方向以相同速度运动.当点P到达点C时.P.Q两点同时停止运动.设运动时间为t(s). (1)求正方形ABCD的边长. (2)当点P在AB边上运动时.△OPQ的面积S之间的函数图像为抛物线的一部分.求P.Q两点的运动速度. 中面积S的函数解析式及面积S取最大值时点P的坐标. 中的速度不变.则点P沿着AB边运动时.∠OPQ的大小随着时间t的增大而增大,沿着BC边运动时.∠OPQ的大小随着时间t的增大而减小.当点P沿着这两边运动时.能使∠OPQ=90°吗?若能.直接写出这样的点P的个数,若不能.直接写不能. 查看更多

 

题目列表(包括答案和解析)

24.(本小题满分14分)

如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。

(1)若AG=AE,证明:AF=AH;

(2)若∠FAH=45°,证明:AG+AE=FH;

(3)若RtΔGBF的周长为1,求矩形EPHD的面积。

查看答案和解析>>

(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

小题1:(1)若取AE的中点P,求证:BP=CF;
小题2:(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
小题3:(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

查看答案和解析>>

(本题满分14分)
【小题1】(1) 如图所示的网格坐标系中,顶点在格点上的矩形ABCD被分割成四块全等的小矩形①、②、③、④,并经过一次或二次变换拼成正方形A1B1C1D1.试写出小矩形从①→⑤、③→⑦一种变换过程;

【小题2】(2) 对任意一个矩形按(1)的方式实施分割、变换后拼成正方形.试探究矩形ABCD的周长与面积分别与正方形A1B1C1D1的周长与面积的大小关系?并用代数方法验证你的结论.

查看答案和解析>>

(本题满分14分)

1.(1) 如图所示的网格坐标系中,顶点在格点上的矩形ABCD被分割成四块全等的小矩形①、②、③、④,并经过一次或二次变换拼成正方形A1B1C1D1.试写出小矩形从①→⑤、③→⑦一种变换过程;

2.(2) 对任意一个矩形按(1)的方式实施分割、变换后拼成正方形.试探究矩形ABCD的周长与面积分别与正方形A1B1C1D1的周长与面积的大小关系?并用代数方法验证你的结论.

 

查看答案和解析>>

(本题满分14分)

1.(1) 如图所示的网格坐标系中,顶点在格点上的矩形ABCD被分割成四块全等的小矩形①、②、③、④,并经过一次或二次变换拼成正方形A1B1C1D1.试写出小矩形从①→⑤、③→⑦一种变换过程;

2.(2) 对任意一个矩形按(1)的方式实施分割、变换后拼成正方形.试探究矩形ABCD的周长与面积分别与正方形A1B1C1D1的周长与面积的大小关系?并用代数方法验证你的结论.

 

查看答案和解析>>


同步练习册答案