二次函数的意义;2.二次函数的图象;3.二次函数的性质 顶点式:y=a(x-h)2+k 查看更多

 

题目列表(包括答案和解析)

(1)把二次函数化成的形式.

(2)写出抛物线的顶点坐标和对称轴,并说明该抛物线是由哪一条形如的抛物线经过怎样的变换得到的?

(3)如果抛物线中,的取值范围是0≤≤3,请画出图象,并试着给该抛物线编一个具有实际意义的情境(如喷水、掷物、投篮等).

查看答案和解析>>

(1)把二次函数代成y=a(x-h)2+k的形式.

(2)写出抛物线的顶点坐标和对称轴,并说明该抛物线是由哪一条形如y=ax2的抛物线经过怎样的变换得到的?

(3)如果抛物线中,x的取值范围是0≤x≤3,请画出图象,并试着给该抛物线编一个具有实际意义的情境(如喷水、掷物、投篮等).

查看答案和解析>>

在函数中,我们规定:当自变量增加一个单位时,因变量的增加量称为函数的平均变化率.例如,对于函数y=3x+1,当自变量x增加1时,因变量y=3(x+1)+1=3x+4,较之前增加3,故函数y=3x+1的平均变化率为3.
(1)①列车已行驶的路程s(km)与行驶的时间t(h)的函数关系式是s=300t,该函数的平均变化率是______;其蕴含的实际意义是______;
②飞机着陆后滑行的距离y(m)与滑行的时间x(s)的函数关系式是y=-1.5x2+60x,求该函数的平均变化率;
(2)通过比较(1)中不同函数的平均变化率,你有什么发现;
(3)如图,二次函数y=ax2+bx+c的图象经过第一象限内的三点A、B、C,过点A、B、C作x轴的垂线,垂足分别为D、E、F,AM⊥BE,垂足为M,BN⊥CF,垂足为N,DE=EF,试探究△AMB与△BNC面积的大小关系,并说明理由.

查看答案和解析>>

在函数中,我们规定:当自变量增加一个单位时,因变量的增加量称为函数的平均变化率.例如,对于函数y=3x+1,当自变量x增加1时,因变量y=3(x+1)+1=3x+4,较之前增加3,故函数y=3x+1的平均变化率为3.
(1)①列车已行驶的路程s(km)与行驶的时间t(h)的函数关系式是s=300t,该函数的平均变化率是______;其蕴含的实际意义是______;
②飞机着陆后滑行的距离y(m)与滑行的时间x(s)的函数关系式是y=-1.5x2+60x,求该函数的平均变化率;
(2)通过比较(1)中不同函数的平均变化率,你有什么发现;
(3)如图,二次函数y=ax2+bx+c的图象经过第一象限内的三点A、B、C,过点A、B、C作x轴的垂线,垂足分别为D、E、F,AM⊥BE,垂足为M,BN⊥CF,垂足为N,DE=EF,试探究△AMB与△BNC面积的大小关系,并说明理由.

查看答案和解析>>

(1)把二次函数化成的形式.

(2)写出抛物线的顶点坐标和对称轴,并说明该抛物线是由哪一条形如的抛物线经过怎样的变换得到的?

(3)如果抛物线中,的取值范围是,请画出图象,并试着给该抛物线编一个具有实际意义的情境(如喷水、掷物、投篮等).

查看答案和解析>>


同步练习册答案