抛物线y=ax2+bx+c的图象与a.b.c之间的关系. 查看更多

 

题目列表(包括答案和解析)

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令k=
c
a
,试问:是否存在实数k,使线段A1B1的长为4
2
.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

如图为抛物线y=ax2+bx+c的图象,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则a、b之间满足的关系式是
a-b+1=0
a-b+1=0

查看答案和解析>>

如图为抛物线y=ax2+bx+c的图象,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则a、b之间满足的关系式是   

查看答案和解析>>

如图为抛物线y=ax2+bx+c的图象,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则a、b之间满足的关系式是________.

查看答案和解析>>

如图1,抛物线y=ax2+bx(a≠0)与双曲线数学公式相交于点A、B.已知点B的坐标为(-2,-2),点A在第一象限内且纵坐标为4.过点A作直线AC∥x轴,交抛物线于另一点C.
(1)求双曲线和抛物线的解析式;
(2)在抛物线y=ax2+bx的对称轴上有一点Q,设w=BQ2+AQ2,试求出使w的值最小的点Q的坐标;
(3)在图1的基础上,点D是x轴上一点,且OD=4,连接CD、AD(如图2),直线CD交y轴于点M,连接AM,动点P从点C出发,沿折线CAD方向以1个单位/秒的速度向终点D匀速运动,设△PMA的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围).
作业宝

查看答案和解析>>


同步练习册答案