已知:如图.抛物线经过..三点. (1)求抛物线的函数关系式, (2)若过点C的直线与抛物线相交于点E (4.m).请求出△CBE的面积S的值, (3)写出二次函数值大于一次函数值的x的取值范围, (4)在抛物线上是否存在点P使得△ABP为等腰三角形?若存在.请指出一共有几个满足条件的点.并求出其中一个点的坐标,若不存在这样的点.请说明理由. 查看更多

 

题目列表(包括答案和解析)

已知:如图,抛物线经过三点.

(1)求抛物线的函数关系式;

(2)若过点C的直线与抛物线相交于点E (4,m),请求出△CBE的面积S的值;

(3)在抛物线上求一点使得△ABP0为等腰三角形并写出点的坐标;

(4)除(3)中所求的点外,在抛物线上是否还存在其它的点P使得△ABP为等腰三角形?若存在,请求出一共有几个满足条件的点(要求简要说明理由,但不证明);若不存在这样的点,请说明理由.

 

查看答案和解析>>

精英家教网已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.
(1)求抛物线的函数关系式;
(2)若过点C的直线y=kx+b与抛物线相交于点E(4,m),请求出△CBE的面积S的值;
(3)在抛物线上求一点P0,使得△ABP0为等腰三角形,并写出P0点的坐标;
附加:(4)除(3)中所求的P0点外,在抛物线上是否还存在其它的点P使得△ABP为等腰三角形?若存在,请求出一共有几个满足条件的点P(要求简要说明理由,但不证明);若不存在这样的点P,请说明理由.

查看答案和解析>>

精英家教网已知:如图,抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3)、B(-1,5)三点.
(1)求抛物线的解析式.
(2)设抛物线与x轴的另一个交点为C.以OC为直径作⊙M,如果过抛物线上一点P作⊙M的切线PD,切点为D,且y轴的正半轴交于点为E,连接MD.已知点E的坐标为(0,m),求四边形EOMD的面积.(用含m的代数式表示)
(3)延长DM交⊙M于点N,连接ON、OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形EOMD=S△DON?请求出此时点P的坐标.

查看答案和解析>>

精英家教网已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.
(1)求抛物线的函数关系式;
(2)若过点C的直线y=kx+b与抛物线相交于点E (4,m),请求出△CBE的面积S的值;
(3)写出二次函数值大于一次函数值的x的取值范围;
(4)在抛物线上是否存在点P使得△ABP为等腰三角形?若存在,请指出一共有几个满足条件的点P,并求出其中一个点的坐标;若不存在这样的点P,请说明理由.

查看答案和解析>>

已知:如图,抛物线y=x2-(m+2)x+3(m-1)与x轴的两个交点M、N在原点的精英家教网两侧,点N在点M的右边,直线y1=-2x+m+6经过点N,交y轴于点F.
(1)求这条抛物线和直线的解析式.
(2)又直线y2=kx(k>0)与抛物线交于两个不同的点A、B,与直线y1交于点P,分别过点A、B、P作x轴的垂线,垂足分别是C、D、H.
①试用含有k的代数式表示
1
OC
-
1
OD

②求证:
1
OC
-
1
OD
=
2
OH

(3)在(2)的条件下,延长线段BD交直线y1于点E,当直线y2绕点O旋转时,问是否存在满足条件的k值,使△PBE为等腰三角形?若存在,求出直线y2的解析式;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案