正确理解方程解的定义.并能应用等式性质巧解考题 方程的解应理解为.把它代入原方程是适合的.其方法就是把方程的解代入原方程.使问题得到了转化. 查看更多

 

题目列表(包括答案和解析)

请依据方程解的定义,检验括号里x的数值是否为方程的解.
(1)
3x+2
8
=x+
1
4
(x=-
2
3
 , x=0)

(2)0.2x=0.8x-7.8(x=-13,x=13,x=12).

查看答案和解析>>

在解决数学问题时,我们经常要回到基本定义与基本方法去思考.试利用方程的解的定义及解方程组的基本方法解决以下问题:
已知a是关于x的方程x2-(2k+1)x+4=0及3x2-(6k-1)x+8=0的公共解,求a和k的值.

查看答案和解析>>

下列关于分式方程解的检验方法:①代入原方程;②代入最简公分母;③代入去分母之后的整式方程.其中正确的是(  )

查看答案和解析>>

根据一元二次方程根的定义,解答下列问题.
一个三角形两边长分别为3cm和7cm,第三边长为a cm,且整数a满足a2-10a+21=0,求三角形的周长.
解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)
当a=5时,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
同理可知a=6,a=8,a=9都不是方程的根.
∴a=7是方程的根.(第二步)
∴△ABC的周长是3+7+7=17(cm).
上述过程中,第一步是根据
三角形任意两边之和大于第三边,任意两边之差小于第三边
三角形任意两边之和大于第三边,任意两边之差小于第三边
,第二步应用了
分类讨论
分类讨论
数学思想,确定a的值的大小是根据
方程根的定义
方程根的定义

查看答案和解析>>

在解决数学问题时,我们经常要回到基本定义与基本方法去思考.试利用方程的解的定义及解方程组的基本方法解决以下问题:
已知a是关于x的方程x2-(2k+1)x+4=0及3x2-(6k-1)x+8=0的公共解,求a和k的值.

查看答案和解析>>


同步练习册答案