不等式组 的整数解是 . 查看更多

 

题目列表(包括答案和解析)

(2004•上海模拟)如图,点E在正方形ABCD的边AB上,AE=1,BE=2.点F在边BC的延长线上,且CF=BC;P是边BC上的动点(与点B不重合),PQ⊥EF,垂足为O,并交边AD于点Q;QH⊥BC,垂足为H.
(1)求证:△QPH∽△FEB;
(2)设BP=x,EQ=y,求y关于x的函数解析式,并写出它的定义域;
(3)试探索△PEQ是否可能成为等腰三角形?如果可能,请求出x的值;如果不可能,请说明理由.

查看答案和解析>>

(2004•上海)数学课上,老师提出:
如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为xC、xD,点H的纵坐标为yH
同学发现两个结论:
①S△CMD:S梯形ABMC=2:3 ②数值相等关系:xC•xD=-yH
(1)请你验证结论①和结论②成立;
(2)请你研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,其他条件不变,结论①是否仍成立(请说明理由);
(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,又将条件“y=x2”改为“y=ax2(a>0)”,其他条件不变,那么xC、xD与yH有怎样的数值关系?(写出结果并说明理由)

查看答案和解析>>

(2004•上海)数学课上,老师提出:
如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为xC、xD,点H的纵坐标为yH
同学发现两个结论:
①S△CMD:S梯形ABMC=2:3 ②数值相等关系:xC•xD=-yH
(1)请你验证结论①和结论②成立;
(2)请你研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,其他条件不变,结论①是否仍成立(请说明理由);
(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,又将条件“y=x2”改为“y=ax2(a>0)”,其他条件不变,那么xC、xD与yH有怎样的数值关系?(写出结果并说明理由)

查看答案和解析>>

(2004•上海模拟)已知抛物线y=8x2+10x+1
(1)试判断抛物线与x轴交点情况;
(2)求此抛物线上一点A(-1,-1)关于对称轴的对称点B的坐标;
(3)是否存在一次函数与抛物线只交于B点?若存在,求出符合条件的一次函数的解析式;若不存在,请说明理由.

查看答案和解析>>

(2004•上海)附加题:在△ABC中,∠BAC=90°,AB=AC=,⊙A的半径为1,如图所示.若点O在BC上运动(与点B、C不重合),设BO=x,△AOC的面积为y.
(1)求关于x的函数解析式,并写出函数的定义域;
(2)以点O为圆心,BO长为半径作⊙O,求当⊙O与⊙A相外切时,△AOC的面积.

查看答案和解析>>


同步练习册答案