题目列表(包括答案和解析)
如图所示,在坐标平面上有一透明片,透明片上有一抛物线及一点P,且抛物线为二次函数y=x2的图象,P点坐标为(2,4).若将此透明片向右、向上平移后,得到抛物线的顶点坐标为(7,2),则此时P点坐标为
(9,4)
(9,6)
(10,4)
(10,6)
如图,抛物线经过,,三点.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上存在一点,使的值最小,求点的坐标以
及的最小值;
(3)在轴上取一点,连接.现有一动点以每秒个单位长度的速度从点出发,沿线段向点运动,运动时间为秒,另有一动点以某一速度同时从点出发,沿线段向点运动,当点、点两点中有一点到达终点时,另一点则停止运动(如右图所示).在运动的过程中是否存在一个值,使线段恰好被垂直平分.如果存在,请求出的值和点的速度,如果不存在,请说明理由.
【解析】此题主要考查了用待定系数法求二次函数解析式,以及利用函数图象和图象上点的性质判断符合某一条件的点是否存在,是一道开放性题目,有利于培养同学们的发散思维能力
小明喜欢研究问题,他将一把三角板的直角顶点放在平面直角坐标系的原点处,两条直角边与抛物线交于、两点.
1.(1)如左图,当时,则= ;
2.(2)对同一条抛物线,当小明将三角板绕点旋转到如右图所示的位置时,过点作轴于点,测得,求出此时点的坐标;
3.(3)对于同一条抛物线,当小明将三角板绕点旋转任意角度时,他惊奇地发现,若三角板的两条直角边与抛物线有交点,则线段总经过一个定点,请直接写出该定点的坐标.
小明喜欢研究问题,他将一把三角板的直角顶点放在平面直角坐标系的原点处,两条直角边与抛物线交于、两点.
1.(1)如左图,当时,则= ;
2.(2)对同一条抛物线,当小明将三角板绕点旋转到如右图所示的位置时,过点作轴于点,测得,求出此时点的坐标;
3.(3)对于同一条抛物线,当小明将三角板绕点旋转任意角度时,他惊奇地发现,若三角板的两条直角边与抛物线有交点,则线段总经过一个定点,请直接写出该定点的坐标.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com