因式分解的两种方法的灵活应用 对于给出的多项式,首先要观察是否有公因式,有公因式的话,首先要提公因式,然后再观察运用公式还是分组.分解因式要分解到不能分解为止. 查看更多

 

题目列表(包括答案和解析)

在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x-3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法:
x2+2x-3=x2+2×x×1+12-1-3------①
=(x+1)2-22------②
=…
解决下列问题:
(1)填空:在上述材料中,运用了
转化
转化
的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;
(2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x-3;
(3)请用上述方法因式分解x2-4x-5.

查看答案和解析>>

小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
复习日记卡片
内容:一元二次方程解法归纳                时间:2007年6月×日
举例:求一元二次方程x2-x-1=0的两个解
方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解
解方程:x2-x-1=0.
解:

方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y=的图象与x轴交点的横坐标,即x1,x2就是方程的解.

方法三:利用两个函数图象的交点求解
(1)把方程x2-x-1=0的解看成是一个二次函数y=的图象与一个一次函数y=图象交点的横坐标;
(2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解.

查看答案和解析>>

小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你将有关内容补充完整: 例题:求一元二次方程x2-x-1=0的两个解。
(1)解法一:选择合适的一种方法(公式法、配方法、分解因式法)求解,解方程:x2-x-1=0;
(2)解法二:利用二次函数图象与坐标轴的交点求解,如图(1)所示,把方程x2-x-1=0的解看成是二次函数y=____的图象与x 轴交点的横坐标,即x1,x2就是方程的解。
(3)解法三:利用两个函数图象的交点求解,
①把方程x2-x-1=0的解看成是一个二次函数y=____的图象与一个一次函数y=____的图象交点的横坐标;②画出这两个函数的图象,用x1,x2在x轴上标出方程的解。

查看答案和解析>>

15、试用两种不同的分组方法把多项式x2+xy-3x-3y分解因式.

查看答案和解析>>

26、(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.

①用两种不同的方法,计算图2中长方形的面积;
②由此,你可以得出的一个等式为:
a2+2a+1
=
(a+1)2

(2)有若干块长方形和正方形硬纸片如图3所示.
①请你用拼图等方法推出一个完全平方公式,画出你的拼图;
②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.

查看答案和解析>>


同步练习册答案