幂的运算问题 例1 下列运算中,计算结果正确的是( ) A.a4·a3=a7 B.a6÷a3=a2; B.(a3)2=a5 D.a3·a6=(ab)3 分析:依据同底数幂的乘法法则判定A正确,依据同底数幂的除法法则判定B错误,依据幂的乘方法则判定C错误,依据积的乘方判定D正确,因此此题为多选题. 答案:A.D. 点评:此题虽然简单,但却综合考查了幂的运算法则,由于是多选题,不能用排除法,需逐一验证. 查看更多

 

题目列表(包括答案和解析)

先阅读下列材料,再解答后面的问题.
材料:一般地,n个相同因数相乘,
a•a…a
n
记为an,如23=8,此时3叫做以2为底8的对数,记为log28(即log28=3
一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,4叫做以3为底81的对数,记为log381=4
问题(Ⅰ)计算以下各对数的值:log24=
2
2
log216=
4
4
log264=
6
6

(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?log24log216log264之间又满足怎样的关系?
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
logaM+logaN=
logaMN
logaMN
(a>0,且a≠1,M>0,N>0)
根据幂的运算法则am•an=am+n以及对数的含义证明上述结论.

查看答案和解析>>

(2012•安庆一模)先阅读下列材料,再解答后面的问题.
一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算以下各对数的值:log24=
2
2
,log216=
4
4
,log264=
6
6

(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;
(3)猜想一般性的结论:logaM+logaN=
loga(MN)
loga(MN)
(a>0且a≠1,M>0,N>0),并根据幂的运算法则:am•an=am+n以及对数的含义证明你的猜想.

查看答案和解析>>

小明学习了“第八章  幂的运算”后做这样一道题:若(2x-3)x+3=1,求x的值.
他解出来的结果为x=1,老师说小明考虑问题不全面,聪明的你帮助小明解决这个问题吗?结果是
2,1或-3
2,1或-3

查看答案和解析>>

(2012•海陵区二模)学习了“幂的运算”后,课本提出了一个问题;“根据负整数指数幂的意义,你能用同底数幂的乘法性质(am•an=am+n,其中m、n是整数)推导出同底数幂除法的性质(am÷an=am-n,其中m、n是整数)吗?”.请你写出简单的推导过程:
am÷an=am
1
an
=am•a-n=am+(-n)=am-n
am÷an=am
1
an
=am•a-n=am+(-n)=am-n

查看答案和解析>>

小明学习了“第八章  幂的运算”后做这样一道题:若(2x-3)x+3=1,求x的值,他解出来的结果为x=1,老师说小明考虑问题不全面,聪明的你能帮助小明解决这个问题吗?
小明解答过程如下:
解:因为1的任何次幂为1,所以2x-3=1,x=2.且2+3=5
故(2x-3)x+3=(2×2-3)2+3=15=1,所以x=2
你的解答是:
解:①∵1的任何次幂为1,所以2x-3=1,x=2.且2+3=5,
∴(2x-3)x+3=(2×2-3)2+3=15=1,
∴x=2;
②∵-1的任何偶次幂也都是1,
∴2x-3=-1,且x+3为偶数,
∴x=1,
当x=1时,x+3=4是偶数,
∴x=1;
③∵任何不是0的数的0次幂也是1,
∴x+3=0,2x-3≠0,
解的:x=-3,
综上:x=2或3或1.
解:①∵1的任何次幂为1,所以2x-3=1,x=2.且2+3=5,
∴(2x-3)x+3=(2×2-3)2+3=15=1,
∴x=2;
②∵-1的任何偶次幂也都是1,
∴2x-3=-1,且x+3为偶数,
∴x=1,
当x=1时,x+3=4是偶数,
∴x=1;
③∵任何不是0的数的0次幂也是1,
∴x+3=0,2x-3≠0,
解的:x=-3,
综上:x=2或3或1.

查看答案和解析>>


同步练习册答案