如图,四边形ABCD为直角梯形,AB∥CD,AD⊥AB,点P在腰AD上移动,要使PB+PC最小. A.PB=PC B.PA=PD C.∠BPC=90° D.∠APB=∠DPC (2)试求出P点的位置. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图所示,在直角梯形ABCD中,AB⊥BC,AD=1,BC=3,CD=4,EF为梯形的中位线,DH为梯形的高且交EF于点G,下列结论:①G为EF的中点;②△EHF为等边三角形;③四边形EHCF为菱形;④S△BEH=S△CFH,其中正确的结论有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

精英家教网如图,在梯形ABCD中,AD∥BC,BD=CD,AB<CD且∠ABC为锐角,若AD=4,BC=12,E为BC上一点,问:当CE分别为何值时,四边形ABED是等腰梯形,直角梯形?请分别说明理由.

查看答案和解析>>

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形--矩形.
实践探究:
(1)矩形ABEF的面积是
 
;(用含a,b,c的式子表示)
(2)类比图2的剪拼方法,请你就图3和图4的两种情形分别画出剪拼成一个平行四边形的示意图.
精英家教网
联想拓展:
小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.
精英家教网

查看答案和解析>>

如图所示,四边形ABCD是直角梯形,AB∥DC,AB=6,CD=3,AD=4.动点M、N分别从A、B两点同时出发,点M以每秒1个单位长的速度沿AB向点B运动;点N以每秒1个单位长的速度沿B-C-D运动;当其中一个点到达终点时,另一个精英家教网点也随即停止.设两个点的运动时间为t(秒).
(1)线段BC的长为
 

(2)当t为何值时,MN∥AD?
(3)设△DMN的面积为S,求S与t之间的函数关系式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?
(4)请直接写出MN⊥BD时t的值.

查看答案和解析>>

精英家教网如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB为⊙O的直径,动点P沿AD方向从点A开始向点D以1厘米/秒的速度运动,动点Q沿CB方向从点C开始向点B以2厘米/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.
(1)求⊙O的直径;
(2)求四边形PQCD的面积y关于P、Q运动时间t的函数关系式,并求当四边形PQCD为等腰梯形时,四边形PQCD的面积;
(3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案