1.证明:对角线互相平分的四边形是平行四边形. 查看更多

 

题目列表(包括答案和解析)

用向量的方法证明:对角线互相平分的四边形是平行四边形.

已知:在图中,ABCD是四边形,对角线AC与BD交于O,且AO=OC,DO=OB.

求证:ABCD是平行四边形.

查看答案和解析>>

精英家教网已知:如图,四边形ABCD中,AC平分∠BAD,∠B和∠D都是直角.
(1)求证:BC=CD.
(2)若将原题中的已知条件“∠B和∠D都是直角”放宽为“∠B和∠D互为补角”,其余条件不变,猜想:BC边和邻边CD的长度是否一定相等?请证明你的结论.
(3)探究:在(2)的情况下,如果再限制∠BAD=60°,那么相邻两边AB、AD和对角线AC之间有什么确定的数量关系?需说明理由.

查看答案和解析>>

已知:如图,四边形ABCD中,AC平分∠BAD,∠B和∠D都是直角.

⑴ 求证:BC=CD.

⑵ 若将原题中的已知条件“∠B和∠D都是直角”放宽为“∠B和∠D互为补角”,其余条件不变,猜想:BC边和邻边CD的长度是否一定相等?请证明你的结论.

⑶ 探究:在⑵的情况下,如果再限制∠BAD=60°,那么相邻两边AB、AD和对角线AC之间有什么确定的数量关系?需说明理由.

 

查看答案和解析>>

已知:如图,四边形ABCD中,AC平分∠BAD,∠B和∠D都是直角.

⑴ 求证:BC=CD.
⑵ 若将原题中的已知条件“∠B和∠D都是直角”放宽为“∠B和∠D互为补角”,其余条件不变,猜想:BC边和邻边CD的长度是否一定相等?请证明你的结论.
⑶ 探究:在⑵的情况下,如果再限制∠BAD=60°,那么相邻两边AB、AD和对角线AC之间有什么确定的数量关系?需说明理由.

查看答案和解析>>

已知:如图,四边形ABCD中,AC平分∠BAD,∠B和∠D都是直角.

⑴ 求证:BC=CD.
⑵ 若将原题中的已知条件“∠B和∠D都是直角”放宽为“∠B和∠D互为补角”,其余条件不变,猜想:BC边和邻边CD的长度是否一定相等?请证明你的结论.
⑶ 探究:在⑵的情况下,如果再限制∠BAD=60°,那么相邻两边AB、AD和对角线AC之间有什么确定的数量关系?需说明理由.

查看答案和解析>>


同步练习册答案