7.如图7.一根竹竿垂直插在水中.露出水面部分长0.5米.若竹竿顶部偏离原地2米.此时竹竿顶恰好与水面齐平.那么水深 米.竹竿偏离角α≈ . 查看更多

 

题目列表(包括答案和解析)

(2010•贺州)如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax2+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,
72
),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.

查看答案和解析>>

如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax2+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.

查看答案和解析>>

如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax2+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.

查看答案和解析>>

九年级甲班数学兴趣小组组织社会实践活动,目的是测量一山坡的护坡石坝高度及石坝与地面的倾角∠α.
精英家教网
(1)如图1,小明所在的小组用一根木条EF斜靠在护坡石坝上,使得BF与BE的长度相等,如果测量得到∠EFB=36°,那么∠α的度数是
 

(2)如图2,小亮所在的小组把一根长为5米的竹竿AG斜靠在石坝旁,量出竿长1米时离地面的高度为0.6米,请你求出护坡石坝的垂直高度AH;
(3)全班总结了各组的方法后,设计了如图3方案:在护坡石坝顶部的影子处立一根长为a米的杆子PD,杆子与地面垂直,测得杆子的影子长为b米,点P到护坡石坝底部B的距离为c米,如果利用(1)得到的结论,请你用a、b、c表示出护坡石坝的垂直高度AH.
(sin72°≈0.95,cos72°≈0.3,tan72°≈3)

查看答案和解析>>

(1)如图一:小明想测量一棵树的高度AB,在阳光下,小明测得一根与地面垂直、长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),墙壁上的影长CD为1.5米,落在地面上的影长BC为3米,则树高AB为多少米.
(2)如图二:在阳光下,小明在某一时刻测得与地面垂直、长为1m的杆子在地面上的影子长为2m,在斜坡上影长为1.5m,他想测量电线杆AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得CD=3m,BC=10m,求电线杆的高度.

查看答案和解析>>


同步练习册答案