.如图所示,AB是半圆O的直径,弦AD.BC相交于点P,∠BPD=α,求的值. 中考链接 14如图,⊙O中OA⊥BC,∠CDA=25°,则∠AOB的度数为 . 15如图.正方形ABCD是⊙O的内接正方形.点P在劣弧上不同于点C得到任意一点.则∠BPC的度数是( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

如图所示,已知AB是半圆O的直径,弦ADBC相交于点P,若∠DPBa,那么等于( )

A.sinα   B.cosα C.tanα   D.

查看答案和解析>>

如图所示,AB是半圆O的直径,弦AD、BC相交于点P,且CD、AB长分别是一元二次方程x2-7x+12=0两个根,则tan∠DPB=________.

查看答案和解析>>

已知AB是半圆O的直径,弦AD、BC相交于P,如图所示,那么等于

[  ]

A.sin∠BPD
B.cos∠BPD
C.tan∠BPD
D.cot∠BPD

查看答案和解析>>

小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索.

【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长.

小明和小聪经过交流,得到了如下的两种解决方法:

方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=

方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=

感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式.

(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,),C为直线AB上一点,过A、O、C的⊙E的半径为2.求线段OC的长.

(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.①y关于x的函数关系式;②求线段EF长度的最小值.

 

 

查看答案和解析>>

小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索.
【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长.

小明和小聪经过交流,得到了如下的两种解决方法:
方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=
方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=
感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式.
(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,),C为直线AB上一点,过A、O、C的⊙E的半径为2.求线段OC的长.

(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.①y关于x的函数关系式;②求线段EF长度的最小值.

查看答案和解析>>


同步练习册答案