50.解析:(1)60-x-y, (2)由题意.得 900x+1200y+1100(60-x-y)= 61000.整理得 y=2x-50. (3)①由题意.得 P= 1200x+1600y+1300(60-x-y)- 61000-1500. 整理得 P=500x+500. ②购进C型手机部数为:60-x-y =110-3x.根据题意列不等式组.得 解得 29≤x≤34. ∴ x范围为29≤x≤34.且x为整数. ∵P是x的一次函数.k=500>0.∴P随x的增大而增大. ∴当x取最大值34时.P有最大值.最大值为17500元. 此时购进A型手机34部.B型手机18部.C型手机8部. 本资料由 提供! 查看更多

 

题目列表(包括答案和解析)

如图(1),在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴负半轴上,∠AOC=60°,OA=4
精英家教网
(1)点C的坐标为
 

(2)如图(2),将△ACB绕点C按顺时针方向旋转30°,得到△A′CB′的位置,其中A′C交直线OA于E,则直线CE的解析式为
 

(3)设A′B′交直线OA、CA于点M、N,则四边形MNCE的面积为
 
平方单位.

查看答案和解析>>

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(l)当0≤x≤200时,求车流速度v关于x的解析式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时,车流量=车流密度×车流速度)可以达到最大,并求出最大值(精确到1辆/时).

查看答案和解析>>

(2012•槐荫区一模)如图所示,梯形ABCD中,BC∥AD,AB=BC=CD,∠ADC=60°,点A、D在x轴上,点A在点D的左侧,点C在y轴的正半轴上,点D的坐标为(2,0).动点P从点C出发,以每秒1个单位长度的速度,在折线段C-B-A上匀速运动到点A停止,设运动时间为t秒.
(1)求出点B、C的坐标;
(2)当t=4时,求直线DP的函数解析式及△DCP的面积;
(3)t为何值时,直线DP恰好将梯形ABCD分成面积比为1:2的两部分?

查看答案和解析>>

如图,在直角坐标系中,点O为原点,直线y=kx+b与x轴交于点A(3,0),与y轴的正半轴交精英家教网于点B,tan∠OAB=
3

(1)求这直线的解析式;
(2)将△OAB绕点A顺时针旋转60°后,点B落到点C的位置,求以点C为顶点且经过点A的抛物线的解析式;
(3)设(2)中的抛物线与x轴的另一个交点为点D,与y轴的交点为E.试判断△ODE是否与△OAB相似?如果认为相似,请加以证明;如果认为不相似,也请说明理由.

查看答案和解析>>

(2013•内江)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.
X 50 60 90 120
y 40 38 32 26
(1)求y关于x的函数解析式;
(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.

查看答案和解析>>


同步练习册答案