27.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆 ,如果一条直线与“蛋圆 只有一个交点,那么这条直线叫做“蛋圆 的切线. 如图, 点A.B.C.D分别是“蛋圆 与坐标轴的交点.已知点D的坐标为, AB是半圆的直径,半圆圆心M的坐标为, 半圆半径为2. (1) 请你求出“蛋圆 抛物线部分的解析式,并写出自变量的取值范围; (2) 你能求出经过点C的“蛋圆 切线的解析式吗?试试看; (3) 开动脑筋想一想,相信你能求出经过点D的“蛋圆 切线的解析式. 查看更多

 

题目列表(包括答案和解析)

精英家教网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,-3)AB为半圆直径,半圆圆心M(1,0),半径为2,则“蛋圆”的抛物线部分的解析式为
 
.经过点C的“蛋圆”的切线的解析式为
 

查看答案和解析>>

精英家教网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

查看答案和解析>>

精英家教网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.开动脑筋想一想,经过点D的“蛋圆”切线的解析式为(  )
A、y=-2x-3
B、y=-x-3
C、y=-3x-3
D、y=
3
2
x-3

查看答案和解析>>

精英家教网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2,则经过点C的“蛋圆”切线EC的解析式是
 

查看答案和解析>>

我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
(3)如果直线x=m在线段OB上移动,交x轴于点D,交抛物线于点E,交BD于点F.连接DE和BE后,对于问题“是否存在这样的点E,使△BDE的面积最大?”小明同学认为:“当E为抛物线的顶点时,△BDE的面积最大.”他的观点是否精英家教网正确?提出你的见解,若△BDE的面积存在最大值,请求出m的值以及点E的坐标.

查看答案和解析>>


同步练习册答案