, 2., 3., 4.. 查看更多

 

题目列表(包括答案和解析)

、(本题8分)如图,CD为⊙O的直径,点A在⊙O上,过点A作⊙O的切线交CD的延长线于点F。已知∠F=30°。

1.(1)求∠C的度数;

2.⑵若点B在⊙O上,ABCD,垂足为EAB,求图中阴影部分的面积.

 

查看答案和解析>>

、(本题6分)已知反比例函数的图象与一次函数的图象相交于点(1,5)。

1.(1)求这两个函数的解析式;   

2.(2)求这两个函数图象的另一个交点的坐标。          

 

 

查看答案和解析>>

、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。问原来规定修好这条公路需多长时间?

 

查看答案和解析>>

、阅读下列材料并填空。平面上有n个点(n≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?

①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……

②归纳:考察点的个数和可连成直线的条数发现:如下表

点的个数

可作出直线条数

2

1=

3

3=

4

6=

5

10=

……

……

n

③推理:平面上有n个点,两点确定一条直线。取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即

④结论:

试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?

(1)分析:

当仅有3个点时,可作出       个三角形;

    当仅有4个点时,可作出       个三角形;

    当仅有5个点时,可作出       个三角形;

……

(2)归纳:考察点的个数n和可作出的三角形的个数,发现:(填下表)

点的个数

可连成三角形个数

3

 

4

 

5

 

……

 

n

 

 

(3)推理:                              

 

(4)结论:

 

 

查看答案和解析>>

、形状     的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的   或

       而得到的。

 

查看答案和解析>>


同步练习册答案