28.如图.抛物线与轴交于.两点.与轴正半轴交于点.且(.0).. (1)求出抛物线的解析式, (2)如图①.作矩形.使过点.点是边上的一动点.连接.作交于点. 设线段的长为.线段的长为. 当点运动时.求与的函数关系式并写出自变量的取值范围.在同一直角坐标系中.该函数的图象与图①的抛物线中≥0的部分有何关系? (3)如图②.在图①的抛物线中.点为其顶点.为抛物线上一动点(不与重合).取点(.0).作且(点..按逆时针顺序).当点在抛物线上运动时.直线.是否存在某种位置关系?若存在.写出并证明你的结论,若不存在.请说明理由. 命题人:李 兰 审题人:冯肖娅 查看更多

 

题目列表(包括答案和解析)

如图,抛物线与轴交于(两点,与轴交于点(设抛物线的顶点为.

(1)求该抛物线的解析式与顶点的坐标.

(2)试判断△的形状,并说明理由.

(3)探究坐标轴上是否存在点,使得以为顶点的三角形与△相似?

若存在,请直接写出点的坐标;若不存在,请说明理由.

 


查看答案和解析>>

如图,抛物线与轴交于(6 , 0)两点,且对称轴为直线x = 2,与轴交于点

(1)求抛物线的解析式;

(2)是抛物线对称轴上的一个动点,连接MA、MC,

当△MAC的周长最小时,求点的坐标;

(3)点在(1)中抛物线上,点为抛物线上一

动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,直接写出所有

满足条件的点的坐标,若不存在,请说明理由。

 


查看答案和解析>>

如图,抛物线与轴交于,0)、,0)两点,且,与轴交于点,其中是方程的两个根。

(1)求抛物线的解析式;

(2)点是线段上的一个动点,过点,交于点,连接,当的面积最大时,求点的坐标;

(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。

查看答案和解析>>

如图,抛物线与轴交于,0)、,0)两点,且,与轴交于点,其中是方程的两个根。

(1)求抛物线的解析式;

(2)点是线段上的一个动点,过点,交于点,连接,当的面积最大时,求点的坐标;

(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。

 



查看答案和解析>>

如图,抛物线与轴交于,0)、,0)两点,且,与轴交于点,其中是方程的两个根。(14分)

(1)求抛物线的解析式;

(2)点是线段上的一个动点,过点,交于点,连接,当的面积最大时,求点的坐标;

(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。

 

查看答案和解析>>


同步练习册答案