26. (1)由已知条件可知: 抛物线经过A.B(1.0)两点. 解得 . (2) 由得:P.C. 设直线PC的解析式是.则 解得. ∴直线PC的解析式是. (3) 如图.过点A作AE⊥PC.垂足为E. 设直线PC与轴交于点D.则点D的坐标为(3.0). 在Rt△OCD中. ∵OC=.. ∴. ∵ OA=3..∴AD=6. ∵∠COD=∠AED=90o.∠CDO为公用角. ∴△COD∽△AED. ∴. 即. ∴. ∵>2.5. ∴ 以点A为圆心.直径为5的圆与直线PC相离 查看更多

 

题目列表(包括答案和解析)

精英家教网九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:
 
,∴m=
 
;已知点B(-2,n)在直线y=2x-1上,求n的方法是:
 
,∴n=
 

问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先
 
,再由已知条件可得
 
.解得:
 
.∴满足已知条件的一次函数的解析式为:
 
.这个一次函数的图象与两坐标轴的交点坐标为:
 
,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,
 
的方法,叫做待定系数法.

查看答案和解析>>

15、如图,四边形ABCD为圆内接四边形,对角线AC、BD相交于点O,在不添加辅助线的情况下,请写出由已知条件可得出的三个不同的正确结论:
(1)
∠BAC=∠BDC
,(2)
∠BAC+∠BCD=180°
,(3)
△BAD∽△CDA
(注:其中关于角的结论不得多于两个).

查看答案和解析>>

29、已知:如图,AD=AE,∠ADC=∠AEB,BE与CD相交于O点.(1)在不添辅助线的情况下,请写出由已知条件可得出的结论(例如,可得出△ABE≌△ACD,∠DOB=∠EOC,∠DOE=∠BOC等.你写出的结论中不能含所举之例,只要求写出4个).①
AB=AC
;②
CD=BE
;③
∠ABC=∠ACB
;④
∠EBC=∠DCB

(2)就你写出的其中一个结论给出证明.
已知:如图AD=AE,∠ADC=∠AEB,BE与CD相交于O点.
求证:
AB=AC

查看答案和解析>>

21、已知:如图,AD=AE,∠ADC=∠AEB,BE与CD相交于O点.
(1)在不添加辅助线的情况下,请写出由已知条件可得出得结论.(例如,可得出△ABE≌△ACD,∠DOB=∠EOC,∠DOE=∠BOC等)你写的结论中不得有上述所举之例,只要写出四个即可.
△DOB≌△EOC
△BCD≌△CBE
∠ABE=∠ACD
BD=EC

(2)就你写出的其中一个结论,说明其成立的理由.

查看答案和解析>>

(1999•河北)九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:    ,∴m=    ;已知点B(-2,n)在直线y=2x-1上,求n的方法是:    ,∴n=   
问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先    ,再由已知条件可得    .解得:    .∴满足已知条件的一次函数的解析式为:    .这个一次函数的图象与两坐标轴的交点坐标为:    ,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,    的方法,叫做待定系数法.

查看答案和解析>>


同步练习册答案