如图.△ABC的角平分线CD.BE相交于点F.且∠A=600.则∠BFC等于( ) A.800 B.1000 C.1200 D.1400 查看更多

 

题目列表(包括答案和解析)

如图,△ABC中,AB=BC=2,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.以点H为原点,BC所在直线为x轴建立如图所示的平面直角坐标系.
(1)一条抛物线经过D、B、C三点,求这条抛物线的解析式;
(2)猜想:线段BG与CE之间存在数量关系BG=数学公式CE吗?若存在,请证明;若不存在,请说明理由;
(3)将△DHC进行平移、旋转、翻折(无任何限制),使它与△BDH拼成特殊四边形(面积不变).则(1)中抛物线上是否存在点P,使它成为所拼特殊四边形异于B、H、D三点的顶点?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

如图,△ABC中,AB=BC=2,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.以点H为原点,BC所在直线为x轴建立如图所示的平面直角坐标系.
(1)一条抛物线经过D、B、C三点,求这条抛物线的解析式;
(2)猜想:线段BG与CE之间存在数量关系BG=CE吗?若存在,请证明;若不存在,请说明理由;
(3)将△DHC进行平移、旋转、翻折(无任何限制),使它与△BDH拼成特殊四边形(面积不变).则(1)中抛物线上是否存在点P,使它成为所拼特殊四边形异于B、H、D三点的顶点?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

精英家教网如图,在△ABC的角平分线CD,BE相交于F,∠A=90°,EG∥BC,且EG⊥CG于G,下列说法:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ACG=∠ABC;④∠DFB=
1
2
∠CGE.其中正确结论是(  )
A、只有①③B、只有②④
C、只有①③④D、①②③④

查看答案和解析>>

如图,在平行四边形ABCD中,AB=5,BC=10,FAD的中点,CEABE,设∠ABCα(60°≤α<90°).

(1)当α=60°时,求CE的长;

(2)当60°<α<90°时,

①是否存在正整数k,使得∠EFDkAEF?若存在,求出k的值;若不存在,请说明理由.

②连接CF,当CE2CF2取最大值时,求tan∠DCF的值.

分析 (1)利用60°角的正弦值列式计算即可得解;

(2)①连接CF并延长交BA的延长线于点G,利用“角边角”证明△AFG和△CFD全等,根据全等三角形对应边相等可得CFGFAGCD,再利用直角三角形斜边上的中线等于斜边的一半可得EFGF,再根据ABBC的长度可得AGAF,然后利用等边对等角的性质可得∠AEF=∠G=∠AFG根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,从而得解;

②设BEx,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的长度,在Rt△CEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答.

查看答案和解析>>

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为4.若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=a,CD=b.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求a•b的值;
(3)在旋转过程中,当△AFG旋转到如图2的位置时,AG与BC交于点E,AF的延长线与CB的延长线交于点D,那么a•b的值是否发生了变化?为什么?
精英家教网

查看答案和解析>>


同步练习册答案