解:根据题意设抛物线解析式为:y=ax 2+h 又知B (2.0).D (2.3) ∴ 解得: ∴y=-x 2+6 ∴E (0.6) 即OE=6 EF=OE-OF=3 t===12 答:水过警戒线后12小时淹到拱桥顶. y2 六.如图.一次函数y1=kx+b与二次函数y2=ax2的图象交于A.B两点. y1 1.利用图中条件.求两个函数的解析式.2.根据图象写出使y1 > y2的x的取值范围. 解:在二次函数y2=ax2上 ∴4=a×22 ∴a=1 则二次函数y2=x2 又A 在二次函数y2=x2上 ∴n=(-1)2 ∴n=1 则A 又A.B两点在一次函数y1=kx+b上 ∴ 解得: 则一次函数y1=x+2 ∴一次函数y1=x+2 . 二次函数y2=x2 (2) 根据图象可知:当-1 < x <2时.y1 > y2 查看更多

 

题目列表(包括答案和解析)

如图,抛物线y=a(x-1)2+c与x轴交于点A(1-,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P(1,3)处.

   (1)求原抛物线的解析式:

   (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W'’型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比 (约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?

(参考数据:=2.236,=2.449,结果可保留根号)

 


查看答案和解析>>

定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2-2x+2是黄金抛物线.
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);
(3)将(2)中的黄金抛物线沿对称轴向下平移3个单位
①直接写出平移后的新抛物线的解析式;
②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)]
【提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-
b
2a
,顶点坐标是(-
b
2a
4ac-b2
4a
)】.精英家教网

查看答案和解析>>

定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2-2x+2是黄金抛物线.
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);
(3)将(2)中的黄金抛物线沿对称轴向下平移3个单位
①直接写出平移后的新抛物线的解析式;
②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)]
【提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-,顶点坐标是(-)】.

查看答案和解析>>

定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2-2x+2是黄金抛物线.
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);
(3)将(2)中的黄金抛物线沿对称轴向下平移3个单位
①直接写出平移后的新抛物线的解析式;
②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)]
【提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-,顶点坐标是(-)】.

查看答案和解析>>

定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2-2x+2是黄金抛物线.
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);
(3)将(2)中的黄金抛物线沿对称轴向下平移3个单位
①直接写出平移后的新抛物线的解析式;
②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)]
【提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-,顶点坐标是(-)】.

查看答案和解析>>


同步练习册答案