1.形如 的式子叫做二次根式.它的值一定是 数. 查看更多

 

题目列表(包括答案和解析)

先阅读下面一段文字,然后解答各题.

通过本节课的学习,我们已经会对某些形如x2pxq型二次三项式进行因式分解,此类多项式的特点是二次项的系数为1,如二次项的系数不为1,比如多项式3x211x10又如何分解呢?

我们知道(x2)(3x5)3x211x10.反过来,就得到3x211x10的因式分解的形式,即3x211x10(x2)(3x5)

我们发现,二次项的系数3分解成13两个因数的积;常数项10分解成25两个因数的积;当我们把1325写成

1          2

 

3   5

后发现1×52×3恰好等于一次项的系数11

像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.

请用十字相乘法将下列各式分解因式:

(1)2x27x3                        (2)3a28a4

(3)6y211y10                       (4)5a2b223ab10

 

查看答案和解析>>

请阅读下列材料,并回答所提出的问题。

三角形内角平分线性质定理:三角形的内角平分线分对边所得的线段与两

边对应成比例。

已知:如图,在△ABC中,AD是角平分线。

求证:

分析:要证,一般只要证BDDCABAC

BDABDCAC所在的三角形相似即可,现在点BDC

在一条直线上,△ABD与△ADC不相似,需要考虑用别的方法换比。在比例式

中,AC恰是BDDCAB的第四比例项,所以考虑过点CCE//AD,交

BA的延长线于点E,从而得到BDDCAB的第四比例项AE,这样,证明

就可以转化成证AEAC

证明:过点CCE//DABA的延长线于点E

1)在上述证明过程中,用到了哪些定理?(写对两个定理即可)

2)在上述分析、证明过程中,主要利用到了下列三种数学思想中的哪一种?选出一

个填在后面的括号内………………………………………………………………( 

A. 数形结合思想       B. 转化思想        C. 分类讨论思想

3)用三角形内角平分线性质定理解答问题。

如下图,已知在△ABC中,AD是角平分线,AB5cmAC4cm

BC7cm,求BD的长。

 

查看答案和解析>>

阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2

例如:x2﹣2x+4=x2﹣2x+1+3=(x﹣1)2+ 3 

x2﹣2x+4=x2﹣4x+4+2x=(x﹣2)2+ 2x 

x2﹣2x+4=x2﹣2x+4+x2=(x﹣2)2+  是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).

请根据阅读材料解决下列问题:

(1)比照上面的例子,将二次三项式x2﹣4x+9配成完全平方式(直接写出两种形式);

(2)将a2+3ab+b2配方(写两种形式即可,需写配方过程);

(3)已知a2+b2+c2﹣2ab+2c+1=0,求a﹣b+c的值.

查看答案和解析>>

问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52          ②
=39975
(1)例题求解过程中,第②步变形是利用______(填乘法公式的名称).
(2)用简便方法计算:9×11×101×10001
问题2:对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa-3a2,就不能直接运用公式了.
此时,我们可以在二次三项式x2+2xa-3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

判断对错

如果A、B分别表示两个整式,那么形如的式子叫做分式.

(  )

查看答案和解析>>


同步练习册答案