9.若x为任意数.则下列各式中成立的是( ) A.=x2 B.=-x2 C.=x D.=-x 查看更多

 

题目列表(包括答案和解析)

下列说法正确的是


  1. A.
    若a为有理数,则a2>0
  2. B.
    两个相反数的绝对值相等
  3. C.
    任何数的偶次幂都是正数
  4. D.
    若a为任意有理数,则10a>9a

查看答案和解析>>

请认真阅读题意,并根据你的发现填空:
(1)将任何一组已知的勾股数中的每一个数都扩大为原来的正整数倍后,就得到一组新的勾股数,例如:3、4、5,我们把每一个数扩大为原来的2倍、3倍,则分别得到6、8、10和9、12、15,
若把每一个数都扩大为原来的12倍,就得到______________,
若把每一数都扩大为原来的n(n为正整数)倍,则得到_________________;
(2)对于任意一个大于1的奇数,存在着下列勾股数
若勾股数为3、4、5.   则有
若勾股数为5、12、13, 则有
若勾股数为7、24、25, 则有
若勾股数为m(m为奇数)、n、______
则有=2n+1,用m表示n=_______
当m=17时,n=_______,此时勾股数为_______________.

查看答案和解析>>

请认真阅读题意,并根据你的发现填空:

(1)将任何一组已知的勾股数中的每一个数都扩大为原来的正整数倍后,就得到一组新的勾股数,例如:3、4、5,我们把每一个数扩大为原来的2倍、3倍,则分别得到6、8、10和9、12、15,

若把每一个数都扩大为原来的12倍,就得到______________,

若把每一数都扩大为原来的n(n为正整数)倍,则得到_________________;

(2)对于任意一个大于1的奇数,存在着下列勾股数

若勾股数为3、4、5.   则有

若勾股数为5、12、13, 则有

若勾股数为7、24、25, 则有

若勾股数为m(m为奇数)、n、______

则有=2n+1,用m表示n=_______

当m=17时,n=_______,此时勾股数为_______________.

 

查看答案和解析>>

阅读下列材料:

  我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;

这个结论可以推广为表示在数轴上对应点之间的距离;

例1 解方程,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2

例2 解不等式▏x-1▏>2,如图,在数轴上找出▏x-1▏=2的解,即到1的距离为2的点对应的数为-1、3,则▏x-1▏>2的解为x<-1或x>3

例3 解方程。由绝对值的几何意义知,该方程表示求在数轴上与1

和-2的距离之和为5的点对应的x的值。在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3

参考阅读材料,解答下列问题:

(1)方程的解为          

(2)解不等式≥9;

(3)若≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>

我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;

 这个结论可以推广为表示在数轴上对应点之间的距离;

例1:解方程,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2

例2:解不等式▏x-1▏>2,如图,在数轴上找出▏x-1▏=2的解,即到1的距离为2的点对应的数为-1、3,则▏x-1▏>2的解为x<-1或x>3

例3:解方程。由绝对值的几何意义知,该方程表示求在数轴上与1

和-2的距离之和为5的点对应的x的值。在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3

参考阅读材料,解答下列问题:

(1)方程的解为                     

(2)解不等式≥9;

(3)若≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>


同步练习册答案