20.的值( ). 是负数 可为正也可为负 查看更多

 

题目列表(包括答案和解析)

如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数。
例如,展开式中的系数1、2、1恰好对应图中第三行的数字;
再如,展开式中的系数1、3、3、1恰好对应图中第四行的数字。
请认真观察此图,写出(a+b)4的展开式,(a+b)4=    ▲   

查看答案和解析>>

右图是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了为非负整数)的展开式中按次数从大到小排列的项的系数.例如展开式中的系数1、2、1恰好对应图中第三行的数字;再如,展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出的展开式.                    

查看答案和解析>>

右图是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了为非负整数)的展开式中按次数从大到小排列的项的系数.例如展开式中的系数1、2、1恰好对应图中第三行的数字;再如,展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出的展开式.                    

 

查看答案和解析>>

如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数。

例如,展开式中的系数1、2、1恰好对应图中第三行的数字;

再如,展开式中的系数1、3、3、1恰好对应图中第四行的数字。

请认真观察此图,写出(a+b)4的展开式,(a+b)4=    ▲   

 

查看答案和解析>>

如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=   

查看答案和解析>>


同步练习册答案