对于分式总有( ) A.= B.= C.= D.= 查看更多

 

题目列表(包括答案和解析)

新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和yx之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点ABC的横坐标分别为4,10,12

(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;

(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);

(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?

查看答案和解析>>

使得函数值为零的自变量的值称为函数的零点.例如,对于函数,                

y=0,可得x=1,我们就说1是函数的零点.己知函数                       (m为常数).

  (1)当=0时,求该函数的零点;

(2)证明:无论取何值,该函数总有两个零点;

(3)如图,设函数的两个零点分别为,且,此时函数图象与x轴的交点分别为AB(点A在点B左侧),点M在直线上,当MAMB最小时,求直线AM的函数解析式.

查看答案和解析>>

为实现沈阳市森林城市建设的目标,在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗.某树苗公司提供如下信息:

  信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量相等.

  信息二:如下表:

设购买杨树、柳树分别为x株、y株.

(1)写出y与x之间的函数关系式(不要求写出自变量的取值范围);

(2)当每株柳树的批发价P等于3元时,要使这400株树苗两年后对该住宅小区的空气净化指数不低于90,应怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元?

(3)当每株柳树批发价格P(元)与购买数量y(株)之间存在关系P=3-0.005y时,求购买树苗的总费用W(元)与购买杨树数量x(株)之间的函数关系式(不要求写出自变量的取值范围).

查看答案和解析>>

使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点.请根据零点的定义解决下列问题:已知函数y=x2-2mx-2(m+3)(m为常数).

(1)当m=0时,求该函数的零点;

(2)证明:无论m取何值,该函数总有两个零点;

(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数解析式.

查看答案和解析>>

(本题满分12分)如图,抛物线ya(x1)(x5)x轴的交点为MN.直线ykxb

x轴交于P(20),与y轴交于C.若AB两点在直线ykxb上,且AO=BO=AOBOD为线段MN的中点,OHRt△OPC斜边上的高.

(1)OH的长度等于___________;k=___________,b=____________;

(2)是否存在实数a,使得抛物线ya(x1)(x5)上有一点E,满足以DNE为顶

点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG,写出探索过程.

 

查看答案和解析>>


同步练习册答案