如图.在直角坐标系中.以x轴上一点P(1,0)为圆心的圆与x轴,y轴分别交于A.B.C.D四点.连结CP.cos∠APC=1/2. 写出A. B. D三点坐标,(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交轴于N.求直线MN的解析式,(4)求图中阴影部分面积S. 查看更多

 

题目列表(包括答案和解析)

如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y精英家教网=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

精英家教网如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O与x轴交于A,B两点,与y轴交于C,D两点.E为⊙O上在第一象限的某一点,直线BF交⊙O于点F,且∠ABF=∠AEC,则直线BF对应的函数表达式为
 

查看答案和解析>>

如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于精英家教网A、B、C、D四点,连接CP,∠APC=60度.
(1)求⊙P的半径R;
(2)求A、B、D三点坐标;
(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式.

查看答案和解析>>

如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,点C的坐标为(0,
3
).
(1)直接写出A、B、D三点坐标;
(2)若抛物线y=x2+bx+c过A、D两点,求这条抛物线的解析式,并判断点B是否在所求的抛物线上,说明理由.
精英家教网

查看答案和解析>>

如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.
(1)写出A、B、D三点坐标;
(2)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式.

查看答案和解析>>


同步练习册答案