解:(1)特征1:都是轴对称图形,特征2:都是中心对称图形,特征3:这些图形的面积都等于4个单位面积,等 (2)满足条件的图形有很多.只要画正确一个.都可以得满分. 查看更多

 

题目列表(包括答案和解析)

作一个图形关于一条直线的轴对称图形,再将这个轴对称图形沿着与这条直线平行的方向平移,我们把这样的图形变换叫做关于这条直线的滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1),结合轴对称和平移的有关性质,解答以下问题:精英家教网
(1)如图2,在关于直线l的滑动对称变换中,试证明:两个对应点A,A′的连线被直线l平分;
(2)若点P是正方形ABCD的边AD上的一点,点P关于对角线AC滑动对称变换的对应点P′也在正方形ABCD的边上,请仅用无刻度的直尺在图3中画出P′;
(3)定义:若点M到某条直线的距离为d,将这个点关于这条直线的对称点N沿着与这条直线平行的方向平移到点M′的距离为s,称[d,s]为点M与M′关于这条直线滑动对称变换的特征量.如图4,在平面直角坐标系xOy中,点B是反比例函数y=
3x
的图象在第一象限内的一个动点,点B关于y轴的对称点为C,将点C沿平行于y轴的方向向下平移到点B′.
①若点B(1,3)与B′关于y轴的滑动对称变换的特征量为[m,m+4],判断点B′是否在此函数的图象上,为什么?
②已知点B与B′关于y轴的滑动对称变换的特征量为[d,s],且不论点B如何运动,点B′也都在此函数的图象上,判断s与d是否存在函数关系?如果是,请写出s关于d的函数关系式.

查看答案和解析>>

有一个二次函数的图象,三位同学分别说出了它的一些特征:甲:对称轴是x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请写出满足上述全部特征的一个二次函数的解析式.

查看答案和解析>>

有一个二次函数的图象,三位同学分别说出了它的一些特征:甲:对称轴是x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请写出满足上述全部特征的一个二次函数的解析式.

查看答案和解析>>

有一个二次函数的图象,三位同学分别说出了它的一些特征:甲:对称轴是x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请写出满足上述全部特征的一个二次函数的解析式.

查看答案和解析>>

如图,网格中每个小正方形的边长为1,请你认真观察图(1)的三个网格中阴影部分构成的图案,解答下列问题:

  这三个图案都具有以下共同特征:都是    ▲    对称图形,面积都是   ▲  

⑵ 请在图(2)中设计出2个具备上述特征而且不是轴对称图形的图案,要求所画图案不能

与图(1)中给出的图案相同.

 

查看答案和解析>>


同步练习册答案