解:⑴BG=2AM.AM⊥BG, 2分 ⑵延长AM至K.使MK=AM.连结DK.EK. 3分 得□ADKE.则EK⊥DC.∠EKD=∠EAD. ∴∠KDC=∠GAD.∴∠BAG=∠ADK. 4分 易证△ABG≌△DAK. 5分 ∴BG=2AM.∠DAK=∠ABG. 6分 ∴AM⊥BG. 7分 ⑶画图略,BG=2AM.AM⊥BG, 10分 查看更多

 

题目列表(包括答案和解析)

24、如图,正方形ABCD和正方形AEFG有公共的顶点A,连BG、DE,M为DE的中点,连AM.
(1)如图1,AE、AG分别与AB、AD重合时,AM和BG的大小和位置关系分别是;
BG=2AM
AM⊥BG

(2)将图1中的正方形AEFG绕A点逆时针旋转α(0°<α<90°)角时,如图2,则(1)中的结论是否仍成立?试证明你的结论;
(3)若将图1中的正方形AEFG绕A点逆时针旋转α(90°<α<180°)角时,则AM和BG的大小和位置关系分别是:
BG=2AM
AM⊥BG
,请你画出图形,并直接写出结论,不要求证明.

查看答案和解析>>

(2012•青岛模拟)同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=
1
2
a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

阅读与理解题.
阅读部分:如图1,△ABC中,∠BAC=45°,AD⊥BC于D,BD=3,DC=2,求△ABC的面积.
解:将△ADB、△ADC分别沿AB翻折得△ABE、△ACF延长EB、FC交于点G,易证四边形AEGF为正方形,设AD=x,则BG=x-3,CG=x-2,在Rt△BGC中,有BG2+GC2=BC2,即(x-3)2+(x-2)2=52  整理得x2-5x-6=0,解得x=6(x=-1舍去),进而求得S△ABC=15.
上述问题的解决方法,是将几何问题转化为代数问题,通过设元,建立方程模型,进而使问题得到了解决.那么代数问题能否用几何的方法解决呢?
理解部分:请在如图2Rt△ABC(∠C=90°)中,通过比例线段解方程:
x2+1
+
x2-24x+160
=13

查看答案和解析>>

如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.

(1)求线段BG的长;

解:

 


(2)求证:DG平分∠EDF;

证:

(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.

证:

查看答案和解析>>

同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos∠AOB=Rcos×120°=Rcos60°,
AM=OAsin∠AOM=Rsin∠AOB=Rsin×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=AB×OM=×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
a(h1+h2+h3)=3R2sin60°cos60°
即:×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=______
正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=______
正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=______.

查看答案和解析>>


同步练习册答案