如图12.在直角坐标系中.以x轴上一点P(1.0)为圆心的圆与x轴.y轴分别交于A.B.C.D四点.连接CP.⊙P的半径为2. (1)写出A.B.D三点坐标,(2)若过弧CB的中点Q作⊙P的切线MN交x轴于M.交y轴于N.求直线MN的解析式 查看更多

 

题目列表(包括答案和解析)

如图1,在直角坐标系xoy中,抛物线L:y=-x2-2x+2与y轴交于点C,以OC为一边向左侧作正方形OCBA上;如图2,把正方形OCBA绕点O顺时针旋转α后得到正方形A1B1C1O(0°<α<90°)﹒
(1)B、C两点的坐标分别为
 
 

(2)当tanα﹦
12
时,抛物线L的对称轴上是否存在一点P,使△PB1C1为直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)在抛物线L的对称轴上是否存在一点P,使△PB1C1为等腰直角三角形?若存在精英家教网,请直接写出此时tanα的值;若不存在,请说明理由﹒

查看答案和解析>>

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点A(0,2),C(-1,0),如图所示.
(1)求点B的坐标;
(2)若以(-
1
2
,-
17
8
)为顶点的抛物线经过点B,求该抛物线的解析式;
(3)在(2)中的抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系中有一点A(
1
2
,-
3
2
),过A点作x轴的平行线l,在l上有一不与A点重合的点B,连接OA,OB.将OA绕O点顺时针方向旋转α°到OA1,OB绕O点逆时针方向旋转α°到OB1
(1)当B点在A点右侧时,如图(1).如果∠AOB=20°,∠A1OB=110°,α=
 
.这时直线AB1与直线A1B有何特殊的位置关系证明你的结论.
(2)如果B点的横坐标为t,△OAB的面积为S,直接写出S关于t的函数关式,并指出t的取值范围.
(3)当α=60时,直线B1A交y轴于D,求以D为顶点且经过A点的抛物线的解析式.
精英家教网

查看答案和解析>>

(2012•丽水)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.

(1)如图1,当点A的横坐标为
-1
-1
时,矩形AOBC是正方形;
(2)如图2,当点A的横坐标为-
12
时,
①求点B的坐标;
②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=-x2,试判断抛物线y=-x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.

查看答案和解析>>

27、如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是(  )

查看答案和解析>>


同步练习册答案