如图AO=2.BO=3.CO=4.DO=6 求证:ABDO=CDBO 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)如图,抛物线ya(x1)(x5)x轴的交点为MN.直线ykxb

x轴交于P(20),与y轴交于C.若AB两点在直线ykxb上,且AO=BO=AOBOD为线段MN的中点,OHRt△OPC斜边上的高.
(1)OH的长度等于___________;k=___________,b=____________;
(2)是否存在实数a,使得抛物线ya(x1)(x5)上有一点E,满足以DNE为顶
点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG,写出探索过程.

查看答案和解析>>

(本题满分10分)
如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为  ;用含t的式子表示点P的坐标为    ;(3分)
(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

查看答案和解析>>

(本题满分12分)如图,抛物线ya(x1)(x5)x轴的交点为MN.直线ykxb

x轴交于P(20),与y轴交于C.若AB两点在直线ykxb上,且AO=BO=AOBOD为线段MN的中点,OHRt△OPC斜边上的高.

(1)OH的长度等于___________;k=___________,b=____________;

(2)是否存在实数a,使得抛物线ya(x1)(x5)上有一点E,满足以DNE为顶

点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG,写出探索过程.

 

查看答案和解析>>

(本题满分10分)

如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为   ;用含t的式子表示点P的坐标为     ;(3分)

(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)

(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

 

查看答案和解析>>

(本题满分12分)如图,抛物线ya(x1)(x5)x轴的交点为MN.直线ykxb

x轴交于P(20),与y轴交于C.若AB两点在直线ykxb上,且AO=BO=AOBOD为线段MN的中点,OHRt△OPC斜边上的高.

(1)OH的长度等于___________;k=___________,b=____________;

(2)是否存在实数a,使得抛物线ya(x1)(x5)上有一点E,满足以DNE为顶

点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG,写出探索过程.

 

查看答案和解析>>


同步练习册答案