9.一个多边形的一个内角的补角与其他内角的和恰为500°.那么这个多边形的边数是 . 查看更多

 

题目列表(包括答案和解析)

一个凸多边形的一个内角的补角与其它内角的和是500°,那么这个多边形的边数有
 
条.

查看答案和解析>>

一个多边形的一个内角的补角与其他内角的和恰为500°,那么这个多边形的边数是______.

查看答案和解析>>

一个凸多边形的一个内角的补角与其它内角的和是500°,那么这个多边形的边数有________条.

查看答案和解析>>

问题提出

我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.

问题解决

如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

类比应用

1.已知:多项式M =2a2-a+1 ,N =a2-2a .试比较M与N的大小.

2.已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边

满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶

点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。                     

     ①这样的长方形可以画       个;

②所画的长方形中哪个周长最小?为什么?

拓展延伸                                                                                                                               

     已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

 

 

查看答案和解析>>

问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
【小题1】已知:多项式M =2a2-a+1 ,N =a2-2a.试比较M与N的大小.
【小题2】已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边
满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。                     
①这样的长方形可以画       个;
②所画的长方形中哪个周长最小?为什么?

拓展延伸                                                                                               
已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>


同步练习册答案