18.如图23-A-9.△ABC中.∠BAC=90°.AB=AC=5cm. △ABC按逆时针方向旋转一个角度后.成为△ACD.则图中的 是旋转中心.旋转角是 . 图23-A-9 查看更多

 

题目列表(包括答案和解析)

阅读材料:如图23—1,的周长为,面积为S,内切圆的半径为,探究与S、之间的关系.连结





解决问题

(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形存在内切圆(与各边都相切的圆),如图23—2且面积为,各边长分别为,试推导四边形的内切圆半径公式;
(3)若一个边形(为不小于3的整数)存在内切圆,且面积为,各边长分别为,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

把两个全等的直角三角板ABC和EFG叠放在一起,且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF的长均为4。
(1)当EG⊥AC于点K,GF⊥BC于点H时,如图23-1,求GH:GK的值.
(2)现将三角板EFG由图23-1所示的位置绕O点沿逆时针方向旋转,旋转角满足条件:
0°<<30°,如图23-2,EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你的结论.

查看答案和解析>>

如图23,已知抛物线轴相交于A、B两点,其对称轴为直线,且与x轴交于点D,AO=1.
【小题1】填空:=_______。=_______,点B的坐标为(_______,_______):
【小题2】若线段BC的垂直平分线EF交BC于点E,交轴于点F.求FC的长;
【小题3】探究:在抛物线的对称轴上是否存在点P,使⊙P与轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

公园有一块三角形的空地△ABC(如图23),为了美化公园,公园管理处计划栽种四种名贵花草,要求将空地△ABC划分成形状完全相同,面积相等的四块.”为了解决这一问题,管理员张师傅准备了一张三角形的纸片,描出各边的中点,然后将三角形ABC的各顶点叠到其对边的中点上,结果发现折叠后所得到的三角形彼此完全重合.你能说明这种设计的正确性吗?

查看答案和解析>>

把两个全等的直角三角板ABC和EFG叠放在一起,且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF的长均为4。

(1)当EG⊥AC于点K,GF⊥BC于点H时,如图23-1,求GH:GK的值.

(2)现将三角板EFG由图23-1所示的位置绕O点沿逆时针方向旋转,旋转角满足条件:

0°<<30°,如图23-2,EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你的结论.

 

查看答案和解析>>


同步练习册答案