题目列表(包括答案和解析)
阅读材料:如图23—1,的周长为,面积为S,内切圆的半径为,探究与S、之间的关系.连结,,
又,,
∴
∴
解决问题:
(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形存在内切圆(与各边都相切的圆),如图23—2且面积为,各边长分别为,,,,试推导四边形的内切圆半径公式;
(3)若一个边形(为不小于3的整数)存在内切圆,且面积为,各边长分别为,,,,,合理猜想其内切圆半径公式(不需说明理由).
公园有一块三角形的空地△ABC(如图23),为了美化公园,公园管理处计划栽种四种名贵花草,要求将空地△ABC划分成形状完全相同,面积相等的四块.”为了解决这一问题,管理员张师傅准备了一张三角形的纸片,描出各边的中点,然后将三角形ABC的各顶点叠到其对边的中点上,结果发现折叠后所得到的三角形彼此完全重合.你能说明这种设计的正确性吗?
把两个全等的直角三角板ABC和EFG叠放在一起,且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF的长均为4。
(1)当EG⊥AC于点K,GF⊥BC于点H时,如图23-1,求GH:GK的值.
(2)现将三角板EFG由图23-1所示的位置绕O点沿逆时针方向旋转,旋转角满足条件:
0°<<30°,如图23-2,EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你的结论.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com