题目列表(包括答案和解析)
如图1,在△ABC中,当∠C=90°,AC=BC时,此时,我们称这种特殊的三角形为等腰直角三角形。
如图1,在△ABC中,当∠C=90°,AC=BC时,此时,我们称这种特殊的三角形为等腰直角三角形。
(1)如图2,△ABC和△CDE都是等腰直角三角形,且∠ACB=∠DCE=90°,请连接AD,BE,并请你猜一猜AD与BE是否相等?
答:______。
(2)如果图2中的AD=BE,请你利用所学知识说明理由。
【解析】根据等腰直角三角形的性质得到∠ACB=∠DCE=90°,AC=BC,CD=EC,然后利用SAS判定△ACD≌△BCE.从而得出AD=BE
如图1,在△ABC中,当∠C=90°,AC=BC时,此时,我们称这种特殊的三角形为等腰直角三角形。
(1)如图2,△ABC和△CDE都是等腰直角三角形,且∠ACB=∠DCE=90°,请连接AD,BE,并请你猜一猜AD与BE是否相等?
答:______。
(2)如果图2中的AD=BE,请你利用所学知识说明理由。
【解析】根据等腰直角三角形的性质得到∠ACB=∠DCE=90°,AC=BC,CD=EC,然后利用SAS判定△ACD≌△BCE.从而得出AD=BE
如图(1),在长方形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为1cm/s,点Q的速度为2cm/s,as时点P、点Q 同时改变速度,点P的速度变为bcm/s,点Q的速度变为dcm/s.图(2)是点P出发x秒后△APD的面积S1(cm2)与x(s)的函数关系图象;图(3)是点Q出发x秒后△AQD的面积S2(cm2)与x(s)的函数关系图象.
(1)参照图(2),求a、b及图(2)中c的值;
(2)求d的值;
(3)设点P离开点A的路程为y1(cm),点Q到A还需走的路程为y2(cm), 请分别写出动点P、Q改变速度后y1、y2与出发后的运动时间x(s)的函数关系式,并求出P、Q 相遇时x的值;
(4)当点Q出发___s时,点P、点Q在运动路线上相距的路程为25cm.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com