1. [答案]如图: [点评] 画直线AD时.要画出向两方延伸的情况.画射线CD时.要画出向D的一旁延伸的情况.画线段AB时.则不要画出向任何一旁延伸的情况.线段是射线.直线的一部分.射线又是直线的一部分. 查看更多

 

题目列表(包括答案和解析)

23、(1)如图1,在正方形ABCD中,点E、F分别在边BC、CD上,AE、BF 交于点O,∠AOF=90°.求证:BE=CF.
(2)如图2,在正方形ABCD中,点E、H、F、G分别在边AB、BC、CD、DA上,
EF、GH交于点O,∠FOH=90°,EF=4.求GH的长.
(3)已知点E、H、F、G分别在矩形ABCD的边AB、BC、CD、DA上,EF、GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,则GH=

②如图4,矩形ABCD由n个全等的正方形组成,则GH=
(用n的代数式表示).

查看答案和解析>>

(2010•绍兴)(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°
求证:BE=CF.
(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.则GH的长为
4
4

(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,
∠FOH=90°,EF=4直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,则GH的长为
8
8


②如图4,矩形ABCD由n个全等的正方形组成,则GH的长为
4n
4n
(用n的代数式表示)

查看答案和解析>>

(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.

(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.

(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4. 直接写出下列两题的答案:

①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;

 ②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).

 

查看答案和解析>>

(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.

(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.

(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4. 直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;

②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).

查看答案和解析>>

(1)如图1,在正方形ABCD中,点E、F分别在边BC、CD上,AE、BF 交于点O,∠AOF=90°.求证:BE=CF.
(2)如图2,在正方形ABCD中,点E、H、F、G分别在边AB、BC、CD、DA上,
EF、GH交于点O,∠FOH=90°,EF=4.求GH的长.
(3)已知点E、H、F、G分别在矩形ABCD的边AB、BC、CD、DA上,EF、GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,则GH=______;
②如图4,矩形ABCD由n个全等的正方形组成,则GH=______(用n的代数式表示).

查看答案和解析>>


同步练习册答案