若方程中.满足.则方程的根是一定有 . 查看更多

 

题目列表(包括答案和解析)

有下列4个命题:

①方程的根是

②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,则CD=3.

③点P(x,y)的坐标x,y满足x2+y2+2x﹣2y+2=0,若点P也在的图象上,则k=﹣1.

④若实数b、c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1.

上述4个命题中,真命题的序号是    

 

查看答案和解析>>

有下列4个命题:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,则CD=3.
③点P(x,y)的坐标x,y满足x2+y2+2x﹣2y+2=0,若点P也在的图象上,则k=﹣1.
④若实数b、c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1.
上述4个命题中,真命题的序号是   

查看答案和解析>>

有下列4个命题:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,则CD=3.
③点P(x,y)的坐标x,y满足x2+y2+2x﹣2y+2=0,若点P也在的图象上,则k=﹣1.
④若实数b、c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1.
上述4个命题中,真命题的序号是   

查看答案和解析>>

(1)试用一元二次方程的求根公式,探索方程ax+bx+c=0(a≠0)的两根互为倒数的条件是______;
(2)如图.边长为2的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是______;
(3)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).
①当t为何值时,四边形PQDC是平行四边形;
②当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2
③是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.

查看答案和解析>>

若关于x的一元二次方程ax2+bx+c=0(a≠0)各项系数满足a+b+c=0,则此方程的根的情况:①必有两个不相等的实数根;②当a=c时,有两个相等的实数根;③当a、c同号时,方程有两个正的实数根.其中正确结论的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>


同步练习册答案