9.答案:证明:过点Ol.O2分别作OlC⊥MN.O2D⊥MN.垂足为C.D. 则OlC∥PA∥O2D.且AC= AM.AD= AN. ∵OlP= O2P . ∴AD=AM.∴AM=AN. 查看更多

 

题目列表(包括答案和解析)

精英家教网阅读下列材料:
如图1,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2外公切线,A、B为切点,
求证:AC⊥BC
证明:过点C作⊙O1和⊙O2的内公切线交AB于D,
∵DA、DC是⊙O1的切线
∴DA=DC.精英家教网
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根据上述材料,解答下列问题:
(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;
(2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图2),已知A、B两点的坐标为(-4,0),(1,0),求经过A、B、C三点的抛物线y=ax2+bx+c的函数解析式;
(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.

查看答案和解析>>

(2013•河西区一模)我们知道,将一条线段AB分割成大小两条线段AP、PB,若小段PB与大段AP的长度之比等于大段AP与全段AB的长度之比,此时线段AP叫做线段AB、PB的比例中项,这种分割叫做黄金分割,点P叫做线段AB的黄金分割点.
那么,一条线段的黄金分割点的个数是
2个
2个

如图,已知线段AB,要求利用尺规作图的方法,在图中作出线段AB的一个黄金分割点,并简要说明作法(不要求证明)
过点B作BD⊥AB,使BD=
1
2
AB,连接AD,在AD上截取DE=DB,在线段AB上截取AP=AE,则点P是线段AB的一个黄金分割点
过点B作BD⊥AB,使BD=
1
2
AB,连接AD,在AD上截取DE=DB,在线段AB上截取AP=AE,则点P是线段AB的一个黄金分割点

查看答案和解析>>

23、如图,已知AB∥CD,求证:∠B+∠BEC-∠C=180度.
证明:过点E作EF∥AB,
因为EF∥AB,且AB∥CD,
所以
AB
EF
.(
如果两直线都与第三条直线平行,
那么这两条直线也互相平行
)(请你完成剩余的证明.)

查看答案和解析>>

阅读下列材料:
如图1,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2外公切线,A、B为切点,
求证:AC⊥BC
证明:过点C作⊙O1和⊙O2的内公切线交AB于D,
∵DA、DC是⊙O1的切线
∴DA=DC.
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根据上述材料,解答下列问题:
(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;
(2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图2),已知A、B两点的坐标为(-4,0),(1,0),求经过A、B、C三点的抛物线y=ax2+bx+c的函数解析式;
(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.

查看答案和解析>>

如右图,E、D分别是AB、AC上的一点,∠EBC、∠BCD的角平分线交于点M,∠BED、∠EDC的角平分线交于N.

求证:A、M、N在一条直线上.

证明:过点N作NF⊥AB,NH⊥ED,NK⊥AC

过点M作MJ⊥BC,MP⊥AB,MQ⊥AC

∵EN平分∠BED,DN平分∠EDC

∴NF__________NH,NH__________NK

∴NF__________NK

∴N在∠A的平分线上

又∵BM平分∠ABC,CM平分∠ACB

∴__________=__________,__________=__________

∴__________=__________

∴M在∠A的__________上

∴M、N都在∠A的__________上

∴A、M、N在一条直线上

 

查看答案和解析>>


同步练习册答案