提取公因式法.公式法.分组分解法,3.6.x+1, 4.16.4y. 二 选择题: 查看更多

 

题目列表(包括答案和解析)

25、(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).
(2)阅读下列分解因式的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①
=(1+x)2(1+x)②
=(1+x)3
①上述分解因式的方法是
提公因式法分解因式
,由②到③这一步的根据是
同底数幂的乘法法则

②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是
(1+x)2007

③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).

查看答案和解析>>

(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).
(2)阅读下列分解因式的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①
=(1+x)2(1+x)②
=(1+x)3
①上述分解因式的方法是______,由②到③这一步的根据是______;
②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是______;
③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).

查看答案和解析>>

(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).
(2)阅读下列分解因式的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①
=(1+x)2(1+x)②
=(1+x)3
①上述分解因式的方法是______,由②到③这一步的根据是______;
②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是______;
③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).

查看答案和解析>>

(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解);
(2)阅读下列分解因式的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①
=(1+x)2(1+x)②
=(1+x)3
①上述分解因式的方法是_________,由②到③这一步的根据是_________
②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是_________
③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数)。

查看答案和解析>>

44、用分解因式法解一元二次方程的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法),如果可以,就可以化为
乘积(或相乘)
的形式看是否能用提取公因式.

查看答案和解析>>


同步练习册答案