22.[提示]延长EA.与CD的延长线交于P点.则△APD∽△EPF∽△BPC. [答案]. 查看更多

 

题目列表(包括答案和解析)

(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E,F分别是AD、BC的中点,连接EF,分别交AC、BD于点M,N,试判断△OMN的形状,并加以证明;(提示:利用三角形中位线定理)
(2)如图2,在四边形ABCD中,若AB=CD,E,F分别是AD、BC的中点,连接FE并延长,分别与BA,CD的延长线交于点M,N,请在图2中画图并观察,图中是否有相等的角?若有,请直接写出结论:
 

(3)如图3,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别是AD、BC的中点,连接FE并延长,与BA的延长线交于点M,若∠FEC=45°,判断点M与以AD为直径的圆的位置关系,并简要说明理由.
精英家教网

查看答案和解析>>

如图,在△ABC中,AC=BC,E,F分别为BC,AC的中点,连接AE,BF.
(1)如图1,求证:∠FBC=∠EAC;
(2)如图2,若∠C=90°,延长EA,BF至点M,N,BN=2BF,EM=2EA,请你探究线段BN与MN的关系,并证明你的结论.

查看答案和解析>>

如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.
精英家教网

查看答案和解析>>

精英家教网如图,已知正方形纸片ABCD的边长为8,⊙O的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA恰好与⊙O相切于点A′(△EFA′与⊙O除切点外无重叠部分),延长FA′交CD边于点G,求A′G的长.

查看答案和解析>>

如图,已知正方形纸片ABCD的边长为8,⊙0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA恰好与⊙O相切于点A ′(△EFA′与⊙O除切点外无重叠部分),延长FA′交CD边于点G,则A′G的长是          

 

查看答案和解析>>


同步练习册答案