永嘉县某一草莓种植大户.需将一批草莓运往省内各地.运输可选用两种汽车中的一种.都可在同一地点将这批草莓装上车沿同一条公路运往目的地.在运输过程中的有关数据如下: 项目 运输工具 装卸 时间 装卸费用 (元) 途中平均速度 途中平均费用 汽车A 2 1100 80 8 汽车B 3 1500 100 7 ⑴设途中运输路程为x千米.用x表示汽车A比汽车B在途中多行驶的时间, ⑵若这批草莓在运输过程中.损耗为160元/时.分别写出两种汽车在运输过程中所需的总费用yA(元).yB(元)关于途中运输路程x的函数关系式, ⑶如果从节省费用的角度考虑.你认为采用哪种汽车较好? 查看更多

 

题目列表(包括答案和解析)

 (本题12分) 如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G,且∠AGO=30°。

(1)点C、D的坐标分别是C(       ),D(       );

(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;

(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。

 

查看答案和解析>>

(本题12分) 如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.

(1)求b,c的值.
(2)连结POPC并把△POC沿CO翻折,得到四边形, 那么是否存在点P,使四边形为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

(本题12分)如图,在平面直角坐标系中,等腰梯形OABC,CB//OA,且点A在x轴正半轴上.已知C(2,4),BC= 4.
(1)求过O、C、B三点的抛物线解析式,并写出顶点坐标和对称轴;
(2)经过O、C、B三点的抛物线上是否存在P点(与原点O不重合),使得P点到两坐标轴的
距离相等.如果存在,求出P点坐标;如果不存在,请说明理由.

查看答案和解析>>

(本题12分) 如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.

(1)求b,c的值.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形,那么是否存在点P,使四边形为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

(本题12分)

如图,AD//BC,点E、F在BC上,∠1=∠2,AF⊥DE,垂足为点O.

(1)求证:四边形AEFD是菱形;

(2)若BE=EF=FC,求∠BAD+∠ADC的度数;

(3)若BE=EF=FC,设AB = m,CD= n,求四边形ABCD的面积.

 

查看答案和解析>>


同步练习册答案