求二次函数在区间上的最大值. 查看更多

 

题目列表(包括答案和解析)

(2011•新华区一模)我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是
4
4

(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5

②在AB上取一点P,可设AP=
x
x
,BP=
y
y

x2+9
+
y2+25
的最小值即为线段
PC
PC
和线段
PD
PD
长度之和的最小值,最小值为
10
10

查看答案和解析>>

(2010•罗湖区模拟)如图,抛物线y=x2-2与直线y=x相交于点A、B.
(1)求A、B两点的坐标;
(2)当x满足什么条件时,一次函数的值大于二次函数的值;
(3)直线l垂直于x轴,与抛物线交于C,与直线AB交于点D,直线l在A、B两点之间移动,求线段CD的最大值;
(4)点P是直线AB上一动点,是否存以P,A,M为顶点的三角形与△ABM相似?若存在,直接写出点P的坐标;若不存在,说明理由.

查看答案和解析>>

(2012•高新区一模)已知二次函数的图象经过A(2,0)、C(0,-12)两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线y=-2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒
2
个单位长度的速度由点P向点O运动,过点M作直线MN∥x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒.问S存在最大值吗?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

“城市发展  交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V( 单位:千米/时) 是车流密度(单位:辆/千米)的函数,且当0<≤28时,V=80;当28<≤188时,V是的一次函数. 函数关系如图所示.  
(1)求当28<≤188时,V关于的函数表达式;  
(2)若车流速度V不低于50千米/时,求当车流密度为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.   
 (注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)

查看答案和解析>>

    “城市发展 交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度(单位:辆/千米)的函数,且当0<≤28时,V=80;当28<≤188时,V是的一次函数. 函数关系如图所示.

   (1)求当28<≤188时,V关于的函数表达式;

   (2)若车流速度V不低于50千米/时,求当车流密度为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.

    (注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)

查看答案和解析>>


同步练习册答案