17.(1)CD=BF.可以通过证明△ADC≌△ABF得到. (2)CD⊥BF.提示:由△ADC≌△ABF得到∠ADC=∠ABF.AB和CD相交的 对顶角相等. (3)△ADC可看成由△ABF绕点A旋转90°角得到的. 查看更多

 

题目列表(包括答案和解析)

如图,在四边形ABCD中,E是BC边的中点,连结DE并延长交AB的延长线于F点,AB=BF。添加一个条件,使四边形ABCD是平行四边形。你认为下面四个条件中可选择的是
[     ]
A.AD=BC
B.CD=BF
C.∠A=∠C
D.∠F=∠CDE

查看答案和解析>>

如图,在四边形ABCD中,E是BC 边上的中点,连接DE并延长,交AB的延长线于F点,AB=BF,添加一个条件,使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是
[     ]
A.AD=BC  
B.CD=BF
C.∠A=∠C
D.∠F=∠CDE

查看答案和解析>>

如图,AB=CD,BF=DE,E、F是AC上两点,且AE=CF,欲证∠B=∠D,可先运用等式的性质证明AF=
CE
CE
,再用“SSS”证明
△ABF
△ABF
△CDE
△CDE
得到结论.

查看答案和解析>>

请尝试解决以下问题:
(1)如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
FAE
FAE

又AG=AE,AF=AF
∴△GAF≌
△EAF
△EAF

GF
GF
=EF,故DE+BF=EF.
(2)运用(1)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,且∠BAE=45°,DE=4,求BE的长.
(3)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),在旋转过程中,等式BD2+CE2=DE2始终成立,请说明理由.

查看答案和解析>>

为了测量一池塘的两端A,B之间的距离,同学们想出了如下的两种方案:

①如图1,先在平地上取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至点D,BC至点E,使DC=AC,EC=BC,最后量出DE的距离就是AB的长;
②如图2,过点B作AB的垂线BF,在BF上取C,D两点,使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即是AB的距离.
问:
(1)方案①是否可行?
可行
可行
,理由是
SAS可证明△ACB≌△DCE,再根据全等三角形的性质可得AB=ED
SAS可证明△ACB≌△DCE,再根据全等三角形的性质可得AB=ED

(2)方案②是否可行?
可行
可行
,理由是
ASA可证明△ACB≌△DCE,再根据全等三角形的性质可得AB=ED
ASA可证明△ACB≌△DCE,再根据全等三角形的性质可得AB=ED

(3)小明说在方案②中,并不一定需要BF⊥AB,DE⊥BF,只需要
AB∥DE
AB∥DE
就可以了,请把小明所说的条件补上.

查看答案和解析>>


同步练习册答案