23.(1)证明: 如图1.连接OD. ∵ OA=OD, AD平分∠BAC, ∴ ∠ODA=∠OAD, ∠OAD=∠CAD. ∴ ∠ODA=∠CAD. ∴ OD//AC. ∴ ∠ODB=∠C=90°. ∴ BC是⊙O的切线. 图1 (2)解法一: 如图2.过D作DE⊥AB于E. ∴ ∠AED=∠C=90°. 又∵ AD=AD, ∠EAD=∠CAD, ∴ △AED≌△ACD. ∴ AE=AC, DE=DC=3. 在Rt△BED中.∠BED =90°,由勾股定理.得 图2 BE=. 设AC=x, 则AE=x. 在Rt△ABC中.∠C=90°, BC=BD+DC=8, AB=x+4, 由勾股定理.得 x2 +82= (x+4) 2. 解得x=6. 即 AC=6. 解法二: 如图3.延长AC到E.使得AE=AB. ∵ AD=AD, ∠EAD =∠BAD, ∴ △AED≌△ABD. ∴ ED=BD=5. 在Rt△DCE中.∠DCE=90°, 由勾股定理.得 CE=. 在Rt△ABC中.∠ACB=90°, BC=BD+DC=8, 由勾股定理.得 AC2 +BC2= AB 2. 图3 即 AC2 +82= 2. 解得 AC=6. 查看更多

 

题目列表(包括答案和解析)

探究证明:
如图,△ABC为⊙O的内接三角形,AB为直径,过点C作CD⊥AB于点D,设AD=a.BD=b.
(1)分别a,b表示线段OC,CD;
(2)探求OC与CD表达式之间存在的数量关系.(用含a,b的式子表示).
归纳结论:
根据上面的观察计算、探究证明,你能得
a+b
2
ab
的大小关系是
a+b
2
ab
a+b
2
ab

实践应用:
要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.

查看答案和解析>>

(2013•莒南县一模)【典型练习】如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(无需证明)
【拓展变式】小明很顺利的完成了上面的练习后,又进一步对该命题进行了发散思维,把原命题中的一些条件进行了变换,得到了如下三个不同的命题:
(1)如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等.
(2)如果两个三角形有两条边和第三边上的高对应相等,那么这两个三角形全等.
(3)如果两个三角形有两条边和夹角的平分线对应相等,那么这两个三角形全等.
【探索新知】小明对这三个命题,无法判断其命题的真假,于是他向老师求教.数学老师对命题(1)做出了一些指导,请你帮助小明完成下面的解答过程.
已知:如图,AB=A′B′,AD=A′D′,AD是BC边上的中线,A′D′是B′C′边上的中线,求证:△ABC≌△A′B′C′,
证明:如图,延长AD至E使AD=DE,连接BE,延长A′D′至E′使A′D′=D′E′,连接B′E′.
【合作学习】对于命题(2)、(3),你能帮助小明判断命题的真假吗?如果是真命题,请给完整的证明,如果是假命题,在下面的空白处做出解答.(要求:画出图形,说明理由.)

查看答案和解析>>

辨析题:在△ABC中,已知AB>AC,求证:AB=AC.
证明:如图,作∠BAC的平分线与边BC的中垂线交于点O,
则OB=OC,再作OE垂直AB于E,OF垂直AC于F,则OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述画图与证明过程中,哪里出错了呢?
这说明我们今后在解题时又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分线与边BC的中垂线相交于点O,OE垂直AB于点E,那么三条线段AB、AC、BE有何等量关系?请你写出来并加以证明.

查看答案和解析>>

(1)观察与猜想:已知当0°<α<60°时,下列关系式有且只有一个正确,正确的是
C
C
(填代号)
A.2sin(30°+α)=sinα+
3
   
B.2sin(30°+α)=2sinα+
3

C.2sin(30°+α)=
3
sinα+cosα.
(2)探究与证明:如图1,△ABC中,∠A=α,∠B=30°,AC=1,请利用图1证明(1)中你猜想的结论;
(3)应用新知识解决问题:
两块分别含有45°和30°的直角三角板如图2方式摆放在同一平面内,BD=8
2
,求S△ABC

查看答案和解析>>

问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;
拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为
5
5

查看答案和解析>>


同步练习册答案