22.证明:(1)∵AB为⊙O的直径.CD是弦.且ABCD于E. ∴CE=ED. = ∴BCD=BAC ∵OA=OC ∴OAC=OCA ∴ACO=BCD (2)设⊙O的半径为Rcm.则OE=OBEB=R8. CE=CD=24=12 在RtCEO中.由勾股定理可得 OC=OE+CE 即R= (R8) +12 解得 R=13 . ∴2R=213=26 . 答:⊙O的直径为26cm. 查看更多

 

题目列表(包括答案和解析)

(2009•黔南州)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆0是否相切?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-16x+60=0的两个根,求直角边BC的长.

查看答案和解析>>

21、如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.
(1)CD与⊙O相切吗?如果相切,请你加以证明,如果不相切,请说明理由.
(2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.

查看答案和解析>>

24、阅读下面的材料:
如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.
求证:AP•AC+BP•BD=AB2
证明:连接AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90°,
∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.
由割线定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
当点P在半圆周上时,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如图(2)当点P在半圆周外时,结论AP•AC+BP•BD=AB2是否成立?为什么?
(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.

查看答案和解析>>

精英家教网如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C.
(1)求经过A、B、C三点的抛物线所对应的函数解析式;
(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;
(3)试说明直线MC与⊙P的位置关系,并证明你的结论.

查看答案和解析>>

已知,如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE⊥AB,垂足为点精英家教网F,连接BD、BE.
(1)仔细观察图形并写出四个不同的正确结论:①
 
,②
 
,③
 
,④
 
(不添加其它字母和辅助线,不必证明);
(2)∠A=30°,CD=
2
3
3
,求⊙O的半径r.

查看答案和解析>>


同步练习册答案