23.本题满分 11 分. (提示:为了方便答题和评卷.建议在答题卡上画出你认为必须的图形) 如图 12.已知直线过点和.是轴正半轴上的动点.的垂直平分线交于点.交轴于点. (1)直接写出直线的解析式, (2)设.的面积为.求关于t的函数关系式,并求出当时.的最大值, (3)直线过点且与轴平行.问在上是否存在点. 使得是以为直角顶点的等腰直角三角形?若存在.求出点C的坐标.并证明,若不存在.请说明理由. (1)································································· 2分 (2)∵.∴点的横坐标为. ①当.即时.. ∴.····························································································· 3分 ②当时.. ∴. ∴······················································································· 4分 当.即时.. ∴当时.有最大值.······················································································ 6分 (3)由.所以是等腰直角三角形.若在上存在点.使得是以为直角顶点的等腰直角三角形.则.所以.又轴.则.两点关于直线对称.所以.得.···································································································································· 7 分 下证.连.则四边形是正方形. 法一:(i)当点在线段上.在线段上 (与不重合)时.如图–1. 由对称性.得. ∴ . ∴ .············································· 8分 (ii)当点在线段的延长线上.在线段上时.如图–2.如图–3 ∵. ∴. ························ 9分 (iii)当点与点重合时.显然. 综合.. ∴在上存在点.使得是以为直角顶点的等腰直角三角形.············ 11 分 法二:由.所以是等腰直角三角形.若在上存在点.使得是以为直角顶点的等腰直角三角形.则.所以.又轴. 则.两点关于直线对称.所以.得. ····················································································································· 7 分 延长与交于点. (i)如图–4.当点在线段上(与不重合)时. ∵四边形是正方形. ∴四边形和四边形都是矩形.和都是等腰直角三角形. ∴. 又∵. ∴. ∴. ∴. 又∵. ∴. ∴. ··································································································· 8分 (ii)当点与点重合时.显然. ·········································· 9分 (iii)在线段的延长线上时.如图–5. ∵.∠1=∠2 ∴ 综合.. ∴在上存在点.使得是以为直角顶点的等腰直角三角形. ······· 11分 法三:由.所以是等腰直角三角形.若在上存在点.使得是以为直角顶点的等腰直角三角形.则.所以.又轴. 则.O两点关于直线对称.所以.得. ······················ 9分 连.∵... ∴. . ∴.∴.································································· 10分 ∴在上存在点.使得是以为直角顶点的等腰直角三角形. ··········· 11分 查看更多

 

题目列表(包括答案和解析)

(2013年广东梅州8分)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.

(1)求线段EC的长;

(2)求图中阴影部分的面积.

 

查看答案和解析>>

(2013年广东梅州3分)从上面看如图所示的几何体,得到的图形是【    】

 

A.       B.      C.       D.

 

 

查看答案和解析>>

(2013年广东梅州10分)如图,已知抛物线y=2x2﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.

(1)写出以A,B,C为顶点的三角形面积;

(2)过点E(0,6)且与x轴平行的直线l1与抛物线相交于M、N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点做平行四边形,当平行四边形的面积为8时,求出点P的坐标;

(3)过点D(m,0)(其中m>1)且与x轴垂直的直线l2上有一点Q(点Q在第一象限),使得以Q,D,B为顶点的三角形和以B,C,O为顶点的三角形相似,求线段QD的长(用含m的代数式表示).

 

查看答案和解析>>

(2013年广东梅州11分)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:

探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.

(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;

(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.

探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.

 

查看答案和解析>>

(2013年广东梅州3分)﹣3的相反数是    

 

查看答案和解析>>


同步练习册答案