28. 如图.抛物线的顶点为A.与y 轴交于点B. (1)求点A.点B的坐标. (2)若点P是x轴上任意一点.求证:. (3)当最大时.求点P的坐标. 贺州市2009年初中毕业升学考试数学评分标准 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

(本题满分12分)如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折
叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.

【小题1】(1)求点E、F的坐标(用含m的式子表示);
【小题2】(2)连接OA,若△OAF是等腰三角形,求m的值;
【小题3】(3)如图(2),设抛物线经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.

查看答案和解析>>

(本题满分12分)如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折
叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.

【小题1】(1)求点E、F的坐标(用含m的式子表示);
【小题2】(2)连接OA,若△OAF是等腰三角形,求m的值;
【小题3】(3)如图(2),设抛物线经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.

查看答案和解析>>

(本小题满分10分)如图,已知抛物线经过A(-2,0),B(-3,3)  及原点,顶点为

(1)求抛物线的解析式;

(2)若点在抛物线上,点在抛物线的对称轴上,且以AODE为顶点的四边形是平行四边形,求点D的坐标;

(3)是抛物线上第一象限内的动点,过点轴,垂足为,是否存在点,使得以为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案