答由于抛物线与x轴有两个交点A.B.可知方程有两个不等实根.即判别式大于零.由已知A在x轴正半轴.B在x轴负半轴.可进一步确定上面方程有一个正根.一个负根.从而将函数图形问题转化为方程根的判定去解决. 略解:(1)由题意: 即.m可取任意实数. .B两点在y轴两侧.即方程有一正根.一负根. 即 解得 .B 解得..经检验不合题意舍去. (3)由抛物线.令x=0.得y=3. 由m=0.求出a=3.b=1. 为等腰直角三角形. 若存在点P.使时.与关于AC为轴对称图形.P点坐标(3.3).将x=3代入中.得y=0.说明P(3.3)不在抛物线上.即不存在抛物线上的点P.使. 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系xOy中,抛物线与x轴的交点为点A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P、Q分别从O、C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC、PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F,设动点P、Q移动的时间为t(单位:秒);
(1)求A、B、C三点的坐标和抛物线的顶点坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程。

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践一应用——探究的过程:

  (1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m.隧道顶部最高处距地面6.25m,并画出了隧道截面图.建立了如图②所示的直角坐标系.请你求出抛物线的解析式.

  (2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全.问该隧道能否让最宽3m.最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?

  (3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述抛物线模型塑.提出了以下两个问题,请予解答:

Ⅰ.如图③,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上.顶点A、B落在x轴上.设矩形ABCD的周长为,求的最大值。

Ⅱ.如图④,过原点作一条的直线OM,交抛物线于点M.交抛物线对称轴于点N,P为直线OM上一动点,过P点作x轴的垂线交抛物线于点Q。问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践一应用——探究的过程:

(1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10 m.隧道顶部最高处距地面6.25 m,并画出了隧道截面图.建立了如图②所示的直角坐标系.请你求出抛物线的解析式.

(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5 m.为了确保安全.问该隧道能否让最宽3 m.最高3.5 m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?

(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述抛物线模型塑.提出了以下两个问题,请予解答:

Ⅰ.如图③,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上.顶点A、B落在x轴上.设矩形ABCD的周长为l,求l的最大值.

Ⅱ.如图④,过原点作一条y=x的直线OM,交抛物线于点M.交抛物线对称轴于点N,P为直线OM上一动点,过P点作x轴的垂线交抛物线于点Q.问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践——应用——探究的过程

(1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道进行测量,测得隧道的路面宽为10米,隧道顶部最高处距地面6.25米,并画出了隧道截面图,建立了如图所示的直角坐标系,请你求出抛物线的解析式

(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖起方向上的高度差至少为0.5米,为了确保安全,问该隧道能否让最宽3米,最高3.5米的两辆车居中并列行驶(不考虑两车之间的空隙)?

(3)探究:该课题学习小组为进一步探究抛物线的有关知识,他们借助上述抛物线模型,提出了以下两个问题,请予解答:

①如图,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上,顶点A、B落在x轴上,设矩形ABCD的周长为为l,求l的最大值

②如图,过原点作一条直线y=x,交抛物线于M,交抛物线的对称轴于N,P为直线OM上一动点,过点P作x轴的垂线交抛物线于点Q,问在直线OM上是否存在点P,使以点P、N、Q为顶点的三角形为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由

 

 

 

 

 

 

 

 

 

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践——应用——探究的过程
(1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道进行测量,测得隧道的路面宽为10米,隧道顶部最高处距地面6.25米,并画出了隧道截面图,建立了如图所示的直角坐标系,请你求出抛物线的解析式
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖起方向上的高度差至少为0.5米,为了确保安全,问该隧道能否让最宽3米,最高3.5米的两辆车居中并列行驶(不考虑两车之间的空隙)?
(3)探究:该课题学习小组为进一步探究抛物线的有关知识,他们借助上述抛物线模型,提出了以下两个问题,请予解答:
①如图,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上,顶点A、B落在x轴上,设矩形ABCD的周长为为l,求l的最大值
②如图,过原点作一条直线y=x,交抛物线于M,交抛物线的对称轴于N,P为直线OM上一动点,过点P作x轴的垂线交抛物线于点Q,问在直线OM上是否存在点P,使以点P、N、Q为顶点的三角形为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由
 

查看答案和解析>>


同步练习册答案