28.如图.平面直角坐标系中. 四边形OABC为正方形.E点在x轴的正半轴上运动.点F在CB边上.且∠OAE=∠FAE 在图①中.E点在OC边上..若延长AE.BC相交于点H.由∠OAE= ∠FAE和AO∥BC.易知∠FAE =∠H.得AF=HF,由于E为OC中点.AO∥BC.可得 △AOE≌△HCE.有AO=CH.又因AO=OC.可得CH=OC.所以有AF=CF+OC (1)若E点在OC边上..请探索AF.FC.OC三条线段之间的数量关系.并证明你的结论, (2)若E点在OC边上..请直接写出AF.FC.OC之间的数量关系 .E点在x轴的正半轴上运动.点F在直线CB上,且∠OAE=∠FAE,当AF和CF相差2个单位长度时.试求出此时E点的坐标. 查看更多

 

题目列表(包括答案和解析)

(本题12分)如图①,平面直角坐标系中,已知C(0,10),点P、Q同时从点出发,在线段OC上做往返匀速运动,设运动时间为t(s),点P、Q离开点O的距离为S图②中线段OA、OB(A、B都在格点上)分别表示当0≤t≤6时P、Q两点离开点O的距离S与运动时间t (s)的函数图像.

1.⑴请在图②中分别画出当6≤t≤10时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.

2.⑵求出P、Q两点第一次相遇的时刻.

3.⑶如图①,在运动过程中,以OP为一边画正方形OPMD,点D在x轴正半轴上,作QE∥PD交x轴于E,设△PMD与△OQE重合部分的面积 为y,试求出当0≤t≤10时y与t(s)的函数关系式(写出相应的t的范围) .

 

查看答案和解析>>

(本题12分)如图①,平面直角坐标系中,已知C(0,10),点P、Q同时从点出发,在线段OC上做往返匀速运动,设运动时间为t(s),点P、Q离开点O的距离为S图②中线段OA、OB(A、B都在格点上)分别表示当0≤t≤6时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.

【小题1】⑴请在图②中分别画出当6≤t≤10时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.
【小题2】⑵求出P、Q两点第一次相遇的时刻.
【小题3】⑶如图①,在运动过程中,以OP为一边画正方形OPMD,点D在x轴正半轴上,作QE∥PD交x轴于E,设△PMD与△OQE重合部分的面积 为y,试求出当0≤t≤10时y与t(s)的函数关系式(写出相应的t的范围).

查看答案和解析>>

(本题12分)如图①,平面直角坐标系中,已知C(0,10),点P、Q同时从点出发,在线段OC上做往返匀速运动,设运动时间为t(s),点P、Q离开点O的距离为S图②中线段OA、OB(A、B都在格点上)分别表示当0≤t≤6时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.

【小题1】⑴请在图②中分别画出当6≤t≤10时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.
【小题2】⑵求出P、Q两点第一次相遇的时刻.
【小题3】⑶如图①,在运动过程中,以OP为一边画正方形OPMD,点D在x轴正半轴上,作QE∥PD交x轴于E,设△PMD与△OQE重合部分的面积 为y,试求出当0≤t≤10时y与t(s)的函数关系式(写出相应的t的范围).

查看答案和解析>>

(本题12分)如图①,平面直角坐标系中,已知C(0,10),点P、Q同时从点出发,在线段OC上做往返匀速运动,设运动时间为t(s),点P、Q离开点O的距离为S图②中线段OA、OB(A、B都在格点上)分别表示当0≤t≤6时P、Q两点离开点O的距离S与运动时间t (s)的函数图像.

1.⑴请在图②中分别画出当6≤t≤10时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.

2.⑵求出P、Q两点第一次相遇的时刻.

3.⑶如图①,在运动过程中,以OP为一边画正方形OPMD,点D在x轴正半轴上,作QE∥PD交x轴于E,设△PMD与△OQE重合部分的面积 为y,试求出当0≤t≤10时y与t(s)的函数关系式(写出相应的t的范围) .

 

查看答案和解析>>

(本题12分)如图①,平面直角坐标系中,已知C(0,10),点P、Q同时从点出发,在线段OC上做往返匀速运动,设运动时间为t(s),点P、Q离开点O的距离为S图②中线段OA、OB(A、B都在格点上)分别表示当0≤t≤6时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.

小题1:⑴请在图②中分别画出当6≤t≤10时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.
小题2:⑵求出P、Q两点第一次相遇的时刻.
小题3:⑶如图①,在运动过程中,以OP为一边画正方形OPMD,点D在x轴正半轴上,作QE∥PD交x轴于E,设△PMD与△OQE重合部分的面积 为y,试求出当0≤t≤10时y与t(s)的函数关系式(写出相应的t的范围).

查看答案和解析>>


同步练习册答案