如图1所示的抛物线:当x= 时.y=0,当x<-2或x>0时. y 0,当x在 范围内时.y>0,当x= 时.y有最大值 . 查看更多

 

题目列表(包括答案和解析)

两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED按图1所示的位置放置,A与C重合,O与C重合.
(1)求图1中,A,B,D三点的坐标;
(2)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△CED和Rt△AOB重叠部分面积为y,求y与x之间的函数关系式;
(3)当Rt△CED以(2)中的速度和方向运动,运动时间x=4秒时Rt△CED运动到如图2所示的位置,求经过A,G,C三点的抛物线的解析式;
(4)现有一半径为2,圆心P在(3)中的抛物线上运动的动圆,试问⊙P在运动过精英家教网程中是否存在⊙P与x轴或y轴相切的情况?若存在,请求出P的坐标,若不存在,请说明理由.

查看答案和解析>>

两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如图一所示的位置放置,点O与E重合.
(1)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长度的速度向右运动,当点E运动到与点B重合时停止,设运动x秒后,Rt△AOB和Rt△CED的重叠部分面积为y,求y与x之间的函数关系式;
(2)当Rt△CED以(1)中的速度和方向运动,运动时间x=2秒时,Rt△CED运动到如图二所示的位置,若抛物线y=
14
x2+bx+c过点A,G,求抛物线的解析式;
(3)现有一动点P在(2)中的抛物线上运动,试问点P在运动过程中是否存在点P到x轴或y轴的距离为2的情况?若存在,请求出点P的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

(2013•乐山)如图,已知抛物线C经过原点,对称轴x=-3与抛物线相交于第三象限的点M,与x轴相交于点N,且tan∠MON=3.
(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转180°得到抛物线C′,抛物线C′与x轴的另一交点为A,B为抛物线C′上横坐标为2的点.
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E,F分别作x轴的垂线,交折线O-B-A于点E1,F1,再分别以线段EE1,FF1为边作如图2所示的等边△EE1E2,等边△FF1F2.点E以每秒1个单位长度的速度从点O向点A运动,点F以每秒1个单位长度的速度从点A向点O运动.当△EE1E2与△FF1F2的某一边在同一直线上时,求时间t的值.

查看答案和解析>>

22、如图1,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
学生小龙在解答图1所示的问题时,具体解答如下:
①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图
2所示的平面直角坐标系;
②设抛物线水流对应的二次函数关系式为y=ax2
③根据题意可得B点与x轴的距离为1m,故B点的坐标为(-1,1);
④代入y=ax2得-1=a•1,所以a=-1;
⑤所以抛物线水流对应的二次函数关系式为y=-x2
数学老师看了小龙的解题过程说:“小龙的解答是错误的”.
(1)请指出小龙的解答从第
步开始出现错误,错误的原因是什么?
(2)请你写出完整的正确解答过程.

查看答案和解析>>

已知:在如图1所示的平面直角坐标系xOy中,A,C两点的坐标分别为A(2,3),C(n,-3)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.

(1)结合以上信息及图2填空:图2中的m=
13
13

(2)求B,C两点的坐标及图2中OF的长;
(3)在图1中,当动点P恰为经过O,B两点的抛物线W的顶点时,
①求此抛物线W的解析式;
②若点Q在直线y=-1上方的抛物线W上,坐标平面内另有一点R,满足以B,P,Q,R四点为顶点的四边形是菱形,求点Q的坐标.

查看答案和解析>>


同步练习册答案